
Understanding the Usage, Impact, and Adoption of Non-OSI
Approved Licenses

Rômulo Meloca1, Gustavo Pinto2, Leonardo Baiser1, Marco Mattos1,
Ivanilton Polato1, Igor Scaliante Wiese1, Daniel M German3

1Federal University of Technology – Paraná (UTFPR), 2University of Pará (UFPA), 3University of Victoria

ABSTRACT
The software license is one of the most important non-executable
pieces of any software system. However, due to its non-technical
nature, developers often misuse or misunderstand software licenses.
Although previous studies reported problems related to licenses
clashes and inconsistencies, in this paper we shed the light on
an important but yet overlooked issue: the use of non-approved
open-source licenses. Such licenses claim to be open-source, but
have not been formally approved by the Open Source Initiative
(OSI). When a developer releases a software under a non-approved
license, even if the interest is to make it open-source, the original
author might not be granting the rights required by those who
use the software. To uncover the reasons behind the use of non-
approved licenses, we conducted a mix-method study, mining data
from 657K open-source projects and their 4,367K versions, and
surveying 76 developers that published some of these projects.
Although 1,058,554 of the project versions employ at least one
non-approved license, non-approved licenses account for 21.51%
of license usage. We also observed that it is not uncommon for
developers to change from a non-approved to an approved license.
When asked, some developers mentioned that this transition was
due to a better understanding of the disadvantages of using an non-
approved license. This perspective is particularly important since
developers often rely on package managers to easily and quickly
get their dependencies working.

CCS CONCEPTS
• Software and its engineering→ Open source model;

KEYWORDS
Open Source Software, Software license, OSI approved
ACM Reference Format:
Rômulo Meloca1, Gustavo Pinto2, Leonardo Baiser1, Marco Mattos1, Ivanil-
ton Polato1, Igor Scaliante Wiese1, Daniel M German3. 2018. Understanding
the Usage, Impact, and Adoption of Non-OSI Approved Licenses. In Proceed-
ings of MSR ’18: 15th International Conference on Mining Software Repositories
, Gothenburg, Sweden, May 28–29, 2018 (MSR ’18), 11 pages.
https://doi.org/10.1145/3196398.3196427

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196427

1 INTRODUCTION
The software licenses are one of the most important non-executable
part of any software system [5]. Particularly relevant to open-
source software (OSS), open-source licenses not only drive how
one can use an OSS but also ensure to what extent others can reuse
it [19]. Similarly to software code, software licenses change [27]
and evolve [25]. Software relicensing is, indeed, commonplace in
open-source software world [7]. As an example, Facebook recently
relicensed four key open-source softwares from BSD + Patents to
MIT license1. According to them, this change was motivated by
an unhappy community looking for alternatives under permissive
licenses. This concern, however, pertains not only to large software
companies that maintain open-source softwares, since software
license is a common good of any open-source software. Therefore,
there is no surprise that software licensing is an active research
field [1, 4, 16, 23].

Despite of its importance, developers do not fully understand
problems related to license usage [1], such as the lack of licenses or
license inconsistencies. The way developers develop software only
exacerbates this problem, since simple actions such as copying a
code snippet from the web has the potential of infringing a software
license [12, 13]. This issue becomes even more relevant in the open-
source era, where a constant flow of new open-source software is
born at a regular basis [10]. That is, developers have a myriad of
codebases to refer to, but the way they do might infringe a software
license (and consequently the whole chain of software that depends
on it).

Another relevant yet not fully understood problem is the use
of open-source licenses that have not been approved by OSI, the
Open Source Initiative (see Section 2 for details). Such software
licenses were not formally approved by an open-source regulator
and, therefore, has not been vetted to be open-source. Currently, OSI
maintains a list with 83 approved open-source software licenses2.
All these licenses went through a rigorous review process, and
not all licenses submitted are approved (e.g., the CC0 license3 has
been submitted but was not approved). According to their website,
the purpose of the OSI’s license review process is to “(1) Ensure
approved licenses conform to the Open Source Definition (OSD), (2)
Identify appropriate License Proliferation Category, (3) Discourage
vanity and duplicative Licenses”4. Furthermore, because OSI defined
what open source is (the Open Source Definition) it claims that
“only software licensed under an OSI-approved Open Source license
should be labeled ‘Open Source’ software.”5

1https://code.facebook.com/posts/300798627056246
2https://opensource.org/licenses/alphabetical
3https://opensource.org/faq#cc-zero
4https://opensource.org/approval
5https://opensource.org/faq

https://doi.org/10.1145/3196398.3196427
https://doi.org/10.1145/3196398.3196427

MSR ’18, May 28–29, 2018, Gothenburg, Sweden R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, D. German

In this study, we investigate to what extent software licenses that
do not provide open-source guarantees (or “non-approved licenses”
for short) are used in open-source projects published on package
managers. Package managers are particularly relevant to license
usage due to at least two reasons: (1) they are growing up faster in
terms of number of libraries available and packages6 published [3,
28], and (2) since packages obey a standardized architecture [22],
installing and reusing a third-party package comes with no pain.
Therefore, packages published in package managers might have
a higher number of dependencies than those that do not rely on
a package manager. As we shall see in Section 4, on average, a
package at NPM has 4.80 dependencies (3rd Quartile: 5, Max: 792).

In this paper we study three well-known package managers:
NPM (Node Package Manager), RubyGems and CRAN (The Com-
prehensive R Archive Network). For each one of these package man-
agers, we downloaded and investigated all packages available on
them. After this process, we ended up with a comprehensive list of
657,811 software packages scattered through the three well-known,
long lived package managers. Specifically, we investigated 510,964
NPM packages, 11,366 CRAN packages, and 135,481 RubyGems
packages. Still, in order to provide an evolutionary perspective of
the license usage on these packages, we studied 4,367,440 different
packages versions (3,539,494 on NPM and 816,580 on RubyGems,
and 11,366 on CRAN. We manually analyzed each license employed
in each one of these package versions.

This paper makes the following contributions:
(1) We conducted the largest study on licenses usage and evolu-

tion targeting∼660k packages (and their 4.3 million versions)
published in three well-known package managers (NPM,
RubyGems and CRAN).

(2) We studied the impact of the use of non-approved licenses
comprehending the whole dependency chain.

(3) We deployed a survey with 76 package publishers (package
developers, owners, or authors) to understand how and why
do they use non-approved licenses.

2 BACKGROUND ON OPEN-SOURCE
LICENSES

The Open Source Definition [17], published by OSI defines 10 prop-
erties that a software license must satisfy to be called Open Source.
OSI has also established an approval process, through which a li-
cense will be approved as Open Source. As of today, only 83 licenses
have been approved (although many other have been submitted).
Other organizations also approve licenses to be open source, such
as the Free Software Foundation (FSF), and the Debian Foundation
(these two call them Free Software Licenses—with one exception,
the NASA Open Source Agreement 1.3, all OSI approved licenses
are considered free software by the FSF7).

In the scope of this paper, we consider licenses approved by
OSI only. This decision was motivated by the fact that differently
than FSF, which can both develop and approve licenses, OSI does
not develop — only approves — licenses. Since a license can be
submitted by anyone interested in contributing to open-source, the

6Throughout this paper, the term “package” refers to any kind of software systems
hosted in any of these package managers, regardless of their characteristics.
7See https://www.gnu.org/licenses/license-list.en.html

community participation, a crucial aspect of modern open-source
software[2, 18], is much more strong at the OSI side.

To better understand the approval process and the implications of
not using an OSI approved license, we conducted a semi-structured
interview with an OSI’s board member. According to him, anybody
can submit a license for OSI approval. During the certification pro-
cess, everyone is invited to participate in the review and discussion
about the license. The goal of the certification process is to make
sure that the submitted license meets all criteria stated at the Open-
Source Definition. If the licenses satisfies the requirements set by
the Open-Source definition, the license is approved.

One of the main benefits of using an OSI approved license is the
guarantee that OSI—and the open source community at large—has
vetted the license and that the license is widely known. Therefore,
the community can understand, trust, and use a license. Otherwise,
if there was no OSI, everyone could develop a new license and claim
that it was open-source; this would require that those using the
software hire lawyers to understand such license.

This means that, even if some license is very popular in other
domains, such as the Create Commons Zero (CC0) license, software
released under CC0 is not open-source software. According to the
board member, more importantly, this threat applies recursively: “if
project ‘A’ (which uses an OSI approved license) depends on project ‘B’
(which does not use an OSI approved license), this would be as danger-
ous as project ‘A’ not using an OSI approved license”. Nevertheless, if
one is interested in publishing software assets only (such as data or
images), such open-source data can be safely released under CC0
(the requirements of the OSD does not apply for assets). A similar
issue occurs when one does not state any license. In this case, the
original author has not granted any rights to the recipient of the
software. That is, without a permission from the original author,
no one can use, redistribute, or create derivative works. Which is
the clearly the opposite of the open-source concepts.

3 METHOD
In this section we present our research questions and method, the
data gathered and, our ground definitions.

3.1 Research Questions
The main goal of this study is to gain an in-depth understanding
of non-approved open-source licenses. We designed the following
three research questions to guide our research:

• RQ1: How common are non-approved licenses on software
packages?
• RQ2: What is the impact of non-approved licenses on the
package managers ecosystem?
• RQ3:Why developers adopt non-approved licenses?

To answer these questions, we conducted a two-phase research,
adopting a sequential mixed-method approach. First, we collected
data about license usage and evolution on a corpus of ∼660k soft-
ware packages (Section 3.2). After that, we performed a survey
targeting 76 package publishers (Section 3.3).

Understanding Non-OSI Approved Licenses MSR ’18, May 28–29, 2018, Gothenburg, Sweden

3.2 First study: mining license usage
3.2.1 Package and Package Managers. In our first study, we

mined license information of software packages hosted in threewell-
known, long lived package managers: NPM, RubyGems, and CRAN.
The package managers studied have the following characteristics:
• NPM8 manages and indexes Node.js packages. Node.js is a
JavaScript runtime environment. The NPM package manager
was launched in 2009 and, as of October 2017, it contains over
521K packages. Although it offers support for maintaining
packages in-site (it has a version control system), most of
the packages available on it are maintained elsewhere (e.g.,
GitHub). To submit a package to NPM, a user must create an
account and push the package using the NPM software utility.
• RubyGems9 manages and indexes Ruby packages.
RubyGems was launched in 2009 and, as of October 2017,
it contains over 192K packages. It also offers support for
maintaining packages in-site, but most of the packages pub-
lished are maintained elsewhere (e.g., GitHub). RubyGems
distributes binaries (i.e., a gem file) through its web interface.
Anyone interested in submitting a package to RubyGems
must create an account and push the package using the gem
software utility.
• CRAN10 manages and indexes R packages. Differently from
NPM and RubyGems, CRAN distributes both the source and
binary code of packages published on it. CRANwas launched
in 1998 and, as of October 2017, it contains over 11K packages.
One interested in submitting a package to CRAN needs to
create an account and submit the package through CRAN
web interface.

These package managers are the host of several well-known
and non-trivial software packages, including React on NPM, Rails
on RubyGems, and ggplot2 on CRAN. Packages in these package
managers are downloadedmillions of times per month. For instance,
only on September 2017, on NPM, the packages BlueBird11, React12,
and Lodash13 were, in total, downloaded more than 69 million times
(18 mi, 6 mi, and 45 mi, respectively). Package managers also make
available package releases (i.e., a new version). Table 1 presents
the distribution of versions per package. As we can see, the 56%
of packages published at NPM have up to three version (58% on
RubyGems, and 75% on CRAN). Packages with 10 or more versions
are also common (17% on NPM, 16% on RubyGems, but 0.5% on
CRAN). Generally speaking, CRAN has less package versions than
NPM and RubyGems.

3.2.2 Data Collection. We created an infrastructure to down-
load, extract data, and match dependencies between package ver-
sions. Our infrastructure downloaded metadata for all packages
available on the three package managers. Both NPM and RubyGems
provide an API to collect relevant data14. Our infrastructure gath-
ers CRAN metadata navigating through its public HTML files. For
8https://www.npmjs.com/
9https://rubygems.org/
10https://cran.r-project.org/
11https://www.npmjs.com/package/bluebird
12https://www.npmjs.com/package/react
13https://www.npmjs.com/package/lodash
14For NPM we used https://skimdb.npmjs.com/registry/_all_docs, whereas for
RubyGems we used https://rubygems.org/versions

Table 1: Versions Per Package

of Versions CRAN NPM RubyGems
1 8,848 150,546 42,668
2 1,942 80,243 22,720
3 360 55,028 15,089
4 140 39,890 10,743
5 67 30,192 7,688
6 38 22,886 5,814
7 30 18,190 4,549
8 12 15,105 3,550
9 17 12,000 2,870

≥10 67 86,884 19,790

CRAN and NPM, we collected our data on September the 7th, 2017.
We collected RubyGems metadata on September the 15th, 2017.
Table 2 depicts the metadata download in each package version for
each package manager.

Table 2: Metadata downloaded in each package manager

CRAN NPM RubyGems
Release date ✓ ✓ ✓
of Downloads — — ✓
of Licenses ✓ ✓ ✓
Author ✓ ✓ ✓
E-mail ✓ ✓ —
of Dependencies ✓ ✓ ✓
Delimiters ✓ ✓ ✓

After downloading the metadata, our infrastructure validated
whether a (downloaded) package X depends on (also downloaded)
a package Y. We validated dependencies using the version number
stated in package X and the version number defined in package
Y. The three package managers use the notion of delimiters to ex-
press a range of possible versions that are compatible with a given
package. Example of delimiters include the characters “>”, “< ”, “*”,
“∼”, and “∧”. For example, a package X that depends on the ‘react’
package can declare a dependecy as “react@^15.0.0”, which in-
dicates that package X depends on any version compatible with
react@15.0.0. In addition, in the NPM and in the RubyGems, pack-
age publishers could use the “x” character to specify a small range of
versions (e.g., 1.1.x or 1.x). To match dependencies, we selected the
first version available thatmatched the pattern. As an example, NPM
package ‘gulp’, version ‘2.6.0’ (gulp@2.6.0 for short) depends on
package event-stream@3.0.x. As a result, our infrastructure suc-
cessfully matched package gulp@2.6.0 to event-stream@3.0.0
dependency. This match proceedure is important for the impact
analysis (RQ2).

We downloaded data using three Google Cloud Platform VMs.
We used one dual-core VM with 7.5Gb of main memory and 20Gb
of SSD, and two single-core VMs with 3.5Gb of main memory and
10Gb of hard disk. After downloading, our dataset occupied 1.2Gb
of disk space (1.1Gb of NPM data, 4.6Mb of CRAN data, and 182Mb

MSR ’18, May 28–29, 2018, Gothenburg, Sweden R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, D. German

of RubyGems data). The infrastructure used as well as the data
collected can be found at the companion website15.

Table 3 shows the distribution of number of licenses per package
version.

Table 3: Licenses Per Version

of Licenses CRAN NPM RubyGems
0 0 369,914 394,582
1 5,346 3,158,391 419,095
2 5,881 10,287 2,411
3 130 669 355
4 6 222 29
5 1 11 61
6 2 0 46
10 0 0 1

As we can see, the majority of packages have a single li-
cense. Interestingly, no package with no license could be found
at CRAN. This happens because CRAN does not publish pack-
ages without the selection of a license16. Still, package versions
with two or more licenses are common. For instance, the pack-
age sixarm_ruby_unaccent@1.1.2, published at RubyGems, was
released with 10 licenses (they are: apache-2.0, artistic-2.0, bsd-3-
clause, cc-by-nc-sa-4.0, agpl-3.0, gpl-3.0, lgpl-3.0, mit, mpl-2.0, and
ruby).

Table 4 presents the number of dependencies per version package.
Approximately 29% of NPM package versions have no dependencies
(39% for CRAN and 30% for RubyGems, respectively).

Table 4: Dependencies per Version

of Dependencies CRAN NPM RubyGems
0 6,435 1,047,089 258,810
1 1,782 537,283 194,312
2 1,701 412,121 143,616
3 1,517 322,234 84,679
4 1,183 241,449 51,338
5 978 180,349 31,424
6 733 139,429 22,698
7 521 111,070 13,720
8 436 85,631 11,302
9 323 69,024 8,699

≥10 1,060 472,466 32,879

Although the average number of dependencies per package
version is 3.8, outliers were found. For instance, the CRAN pack-
age seurat@2.0.1 has 41 dependencies, the RubyGems package
aws-sdk-resources@3.1.0 has 105 dependencies, and the NPM
package primeng-custom@4.0.0-beta.1 has 500 dependencies.

15https://github.com/rmeloca/EcosystemsAnalysis
16https://cran.r-project.org/web/packages/policies.html

3.2.3 License Groups. As aforementioned, we downloadedmeta-
data for 657,811 software packages (510,964 NPM packages, 11,366
CRAN packages, and 135,481 RubyGems packages), spanning
4,367,440 versions (3,539,494 on NPM and 816,580 on RubyGems,
and 11,366 on CRAN). When analyzing the licenses with which
each version was released, we found that some of them included ty-
pos or wrong names. This happened because NPM and RubyGems
allow one to fill the license field with any information. We then
manually normalized each license found.

The normalization process was conducted in pairs, followed by
conflict resolution meetings. For each license, two authors checked
if it (1) was approved by OSI, (2) was not approved but was defined
somewhere else, i.e., in the Software Package Data Exchange17,
(3) was not approved neither not defined anywhere else. Licenses
not found at OSI list neither at SPDX were allocated in the Other
category. To check whether the license was already defined, we
searched for its specification on blog posts, Q&A websites, and
mailing lists. If the formal specification of a license was not found,
the license was included on the non-approved license group. After
this process, we ended up with six license groups, namely:
• OSI licenses: Any licenses approved by OSI. For this case,
we also fixed small issues, such as trivial typos. As an exam-
ple, we successfully normalized the “apache 2” license to its
correct form, “apache-2.0”.
• Incomplete licenses: Any probably approved license, al-
though we could not fix some issues. For instance, package
publishers often omit the version number, e.g., “bsd” or “lgpl”,
so we could not be sure about which license version was
used.
• SPDX (but not OSI) licenses: These are the licenses listed
in the SPDX License List18 that were not formally approved
by OSI. This group include popular and defined licenses,
such as, the “Do What the Fuck You Want to Public License”
(WTFPL) or the “Creative Commons Zero” (CC0) license.
• Missing or Absence of a license: We aggregated in this
group package versions without any license at all (i.e., when
package publishers left empty the license field), or developers
filled explicit with the NONE word the license field. This is
a sub-category of copyright licenses because, as discussed in
Section 2, when no license is declared, the original authors
retains all rights.
• Other: Any licenses with undefined typos, wrong names, or
even curses. Examples include: the “d” license and the “Not
specified” license. Additionally, we included in this group
licenses that the packager publisher put an external link in
the license information. We did not inspect each file individ-
ually and such data was not included in any of the analysis
we conducted because they represent less than 0,5%.
• Copyright licenses: This occurs when package publishers
explicitly mention that they retain the copyright. Examples
include the “my own” license, the “(c) Copyright” license, or
the “all rights reserved” license.

At the end of this normalization process, we ended up with 973
distinct licenses (758 at NPM, 46 at CRAN, and 336 at RubyGems).

17https://spdx.org/
18https://spdx.org/licenses/

Understanding Non-OSI Approved Licenses MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Non-approved licenses comprehend all licenses but not OSI licenses
and Incomplete licenses.

3.3 Second study: a survey with package
publishers

In our second study, we deployed a survey with package publishers
of the NPM package manager. We focused on this package manager
because (1) the email addresses of the package publishers could be
recovered and (2) packages in this package manager exhibits the
greatest number of dependencies, which are more likely to affect/be
affected, if a license inconsistency is found. We used the following
criteria to identify our population: we selected the package pub-
lishers of packages versions released under a non-approved license
with at least one dependency. This ensures that the irregularity
propagates to other packages. After apply the criteria, we obtained
385 package publishers from different project.

Our survey was based on the recommendation Smith et al. [21],
employing principles for increasing survey participation, such as
sending personalized invitations, allowing participants to remain
completely anonymous and, asking closed and direct questions as
much as possible. Our survey had 14 questions (three of which were
open), grouped in three broad interests: demographics (e.g., what is
your gender? and what is your profession?), understanding non-
approved adoption (e.g., why did you choose? and are you aware
of the implications?), and usage frequency (e.g., how often do you
use non-approved licenses? and how often do you do not declare a
license?). The open questions were analyzed in pairs, followed by
conflict resolution meetings. Participation was voluntary and the
estimated time to complete each survey was 5-10 minutes. When
sending our invitation email, 8 messages were not delivered due to
technical reasons. We received 76 responses, representing 20% of
response rate. The survey is available at: https://goo.gl/Jiuwzp.

4 RESULTS
In this section, we report the results of our study grouped by each
research question.

4.1 RQ1. How common are non-approved
licenses on software packages?

After the normalization process, we found a total of 973 distinct
licenses. These licenses were declared a total of 4,369,024 times.
The number of license declarations is higher than the number of its
package versions given that one package often employs more than
one license (as showed at Table 3). Table 5 shows the distribution
of each license group.

As we can see, non-approved licenses (all licenses defined at
Section 3.2.3 except OSI licenses and Incomplete licenses) were
used 858,311 times, which corresponds to roughly 20% of the overall
license usage. Most of them, nevertheless, are related to the absence
of a license. We found 764,496 package versions without any license
declaration (which is accounts for 89% of the non-approved license
usage). In particular, on RubyGems, missing licenses correspond to
48% of the total license used (10.41% on NPM).

We also studied license usage through an evolutionary perspec-
tive. In order to provide a general overview, Table 6 groups evolution

Table 5: License Groups on Package Versions

Group CRAN NPM RubyGems TOTAL
OSI 15,724 3,009,782 403,693 3,429,199
INCOMPLETE 34 73,647 7,833 81,514
SPDX but not OSI 162 30,688 6,215 37,065
MISSING 8 400,618 396,178 796,804
OTHER 220 10,978 4,953 16,151
COPYRIGHT 0 7,106 1,185 8,291

patterns of license changes. We pairwise analyzed all versions avail-
able in order to verify how many times a license changed from one
group to another. The results show that package versions, regard-
less of the package manager, tend to propagate their license used
over their versions. Therefore, the main diagonal always have the
higher values. For instance, at NPM we found that 311,455 package
versions without any license associated still had this non-approved
license in the next version.

Table 6: Patterns of license evolution

NPM

From\To OSI INC SPDX MISS OTH COP

OSI 2,576,692 3,012 2,060 2,125 423 116
INC 4,573 61,535 44 144 363 205

SPDX 2,153 26 25,489 182 78 56
MISS 8,911 321 256 337,711 87 23
OTH 502 345 99 51 9,231 241
COP 200 212 58 19 267 6,424

RubyGems

From\To OSI INC SPDX MISS OTH COP

OSI 336,639 505 574 380 553 37
INC 854 6,575 99 5 116 0

SPDX 618 82 5,095 51 270 1
MISS 8,112 329 279 324,153 185 10
OTH 808 119 272 9 4,197 14
COP 50 1 1 5 15 1,029

Since the changes from approved to non-approved are the most
relevant ones to our study, we counted how many times a package
version changed from an OSI-approved license to a non-approved
license, and vice-versa. We identified these changes in 12,491 pack-
ages at RubyGems and 24,075 packages at NPM. Among these
package, on RubyGems, 10,442 package versions changed from a
non-approved to an approved license. In this case, the publishers
corrected their wrong license as presented in Table 8.

Interestingly, the number of changes from an approved to a
non-approved licence was much lesser. On RubyGems, we found
only 2,049 package versions that changed from an approved li-
cense to a non-approved license. A similar behavior occurred at
NPM. The number of changes from a non-approved license is much
greater than the opposite: (16,339 package versions changed from
a non-approved license to an approved one, whereas 7,736 package

MSR ’18, May 28–29, 2018, Gothenburg, Sweden R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, D. German

versions changed from an approved to a non-approved one). As an
example, when upgrading from zorg@0.0.1 to zorg@0.0.10, the
NPM package changed from the know “ISC” license to no license
at all. We did not performed this analysis at CRAN because it does
not provide such information.

To provide a more fine-grained perspective about the evolution
patterns, we analyzed the top 10 most common changes from an
approved license to a non-approved license, and vice-versa. Ta-
ble 7 presents the evolution patterns, focusing on changes from
an approved to a non-approved license. The majority of changes
observed were when changing from MIT license to no license at
all (1,286 instances found on NPM, and 248 on RubyGems). The
effects of a missing license are exactly the opposite a developer
might think: it applies the copyright instead of opening the source
code. Therefore, the migration from a missing license to the MIT
license can be explained as a correction of this effect, specially due
to the permissive characteristics of such license. This evidence is
supported by Almeida [1] and by ours findings that developers
might not fully understand the licensing process of a software.

Table 7: The 10 Most Common License Evolution Patterns:
From Approved to Non-Approved

NPM RubyGems
Evolution Patterns # Evolution Patterns #

mit→ missing 1,286 mit→ missing 248
isc→ missing 604 apache-2.0→ missing 85
apache-2.0→ missing 116 bsd-3-clause→ missing 33
bsd-2-clause→ missing 37 lgpl-2.0→ missing 4
gpl-3.0→ missing 20 gpl-3.0→ missing 4
bsd-3-clause→ missing 19 bsd-2-clause→ missing 2
gpl-2.0→ missing 12 gpl-2.0→ missing 2
lgpl-3.0→ missing 9 lgpl-3.0→ missing 1
fair→ missing 9 ms-pl→ missing 1
mpl-2.0→ missing 7 — —

Table 8 presents the evolution patterns between licenses, but now
focusing in changes from a non-approved to an approved license.
In RubyGems, we found that the majority of the cases changed
from a missing license to MIT (6,556 instances), Apache-2.0 (614
instances), GPL-3.0 (239 instances), or GPL-2.0 (153 instances). A
similar pattern occurs on NPM. Most of the changes are from a
missing license to MIT (6,667), ISC (831 instances), Apache-2.0 (633
instances), or BSD-3-CLAUSE (262 instances).

RQ1 Summary.We found 1,058,554 packages versions (24.23%)
released under non-approved licenses. Packages published on
RubyGems are the most affected ones (55% of them employed a
non-approved license). The missing (lack of a license) license is
widespread. When license change occurs, most of the package
versions keep the same license, although changes from a non-
approved to an approved license, and vice-versa, are common.

Table 8: The 10 Most Common License Evolution Patterns:
From Non-Approved to Approved

NPM RubyGems
Evolution Patterns # Evolution Patterns #

missing→ mit 6,667 missing→ mit 6,556
missing→ isc 831 missing→ apache-2.0 614
missing→ apache-2.0 633 missing→ gpl-3.0 239
missing→ bsd-3-clause 262 missing→ gpl-2.0 153
missing→ gpl-3.0 137 missing→ bsd-3-clause 133
missing→ bsd-2-clause 91 missing→ lgpl-3.0 86
missing→ gpl-2.0 85 missing→ bsd-2-clause 81
missing→ lgpl-3.0 61 missing→ artistic-2.0 73
missing→ mpl-2.0 49 missing→ agpl-3.0 33
missing→ agpl-3.0 35 missing→ lgpl-2.1 31

4.2 RQ2. What is the impact of non-approved
licenses on the package managers
ecosystem?

To understand the impact of a non-approved license, we calcu-
lated two types of metrics (irregular and affected) in three different
granularities (graph order).
• Irregular. A package is called irregular if at least one of its
versions has a direct dependency to a package released under
a non-approved license. If a package is irregular it means
that it can affect other packages that depends on it.
• Affected. A package is affected if at least one of its versions
has direct or indirect dependency to a package that is irregu-
lar. Direct dependency is when one package father (affected)
depends on its child (irregular). Indirect dependency is when
there are more than one level between affect and irregular
packages.

With these metrics, we analyzed the whole dependency graph
of all package versions. Table 9 shows the impact of non-approved
licenses in terms of packages, versions, and dependencies. In terms
of packages, although NPM have more irregular and affected pack-
ages, RubyGems presents a higher proportion of irregular (46% vs
18%) and affected (55% vs 38%) packages than NPM, which sug-
gests that almost half of all package versions on RubyGems are
irregular. The low number of packages, versions, and dependencies
affected at CRAN is because CRAN prevents the absence of licenses
by requiring package publishers to choose at least one from their
license selection. Again, when we projected the impact including
the indirect dependencies of each package version, the impact in
NPM is higher than RubyGems, because NPM packages have more
versions.

To provide amore detailed example, Figure 1 shows a fragment of
a dependency graph of the package request@2.81.0. This particu-
lar package has 23,205 direct dependencies to it (6,840 are irregular)
and 42,938 indirect dependencies to it (parents). Moreover, we omit-
ted from Figure 1 the regular direct dependencies. In the figure,
solid lines edges are regular dependencies and dotted lines edges
are irregular dependencies. Double border lines vertexes are regular
package versions whereas single solid border ones are irregular.

Understanding Non-OSI Approved Licenses MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 9: Impact caused by non-approved licenses in each
package manager

Graph Order Metric CRAN NPM RubyGems

Packages

11,366 510,964 135,481
Irregular 1082 78,224 62,967

Proportion 0.095 0.153 0.464
Affected 1455 194,741 75,475

Proportion 0.128 0.381 0.557

Versions

11,366 3,539,494 816,580
Irregular 35 690,703 440,443

Proportion 0.003 0.195 0.539
Affected 36 1,619,248 520,967

Proportion 0.003 0.457 0.637

Dependencies
1,086 15,521,508 1,765,288

Irregular 59 1,364,281 1,088,298
Proportion 0.054 0.087 0.616

Dotted border vertexes represents affected packages. Notice that a
package might be irregular and affect at the same time.

We also observed that in this fragment of the graph, three pack-
ages have a non-approved missing license associated with: “assert-
plus”, “verror”, and “extsprintf”. It is worth to mention that pack-
age “assert-plus” and “extsprintf” are considered regular packages
because they do not have a dependency to any package version
released under a non-approved license.

Figure 1: Example of a affected package version dependency
tree

Another example occurs on RubyGems package manager: the
package activesupport, actually on version 4.2.6, was down-
loaded 174,538,434 times on its entire life cycle, but in the ver-
sion 4.0.0, released on 2013 (25th June), this package was depend-
ing to the unlicensed packages minitest@4.2.0, multi_json@1.3.3,

thread_safe@0.1.0 and tzinfo@0.3.37 (activesupport also was depen-
dending to the MIT-licensed package i18n@0.6.4). This particular
version was downloaded 3,107,216 times and was used by 1,093
another published packages directly and by 16,526 packages taking
into account both direct and indirect dependencies. The package
activesupport is a toolkit extracted from the Rails framework’s core.

To provide an extra perspective of the impact of non-approved
licenses, we compared the number of irregular and affected values
with incomplete licenses. We chose incomplete licenses because
they can be interpreted as wrong licenses, since they do not have a
correct name or version license.

Table 10 presents themost common incomplete licenses per pack-
age manager. Among the most incomplete licenses, we observed
that package publishers are using a number of licenses omitting its
version.

Table 10: Top 10 Incomplete Licenses

CRAN NPM RubyGems
License # License # License #
agpl 12 bsd 59,132 bsd 4,280
bsd 11 gpl 7,904 gpl 1,783
cecill 6 lgpl 2,747 lgpl 1,067
mpl 2 epl 1,173 agpl 304
epl 2 mpl 854 artistic 166
bsl 1 agpl 832 epl 71
— — free 218 mpl 50
— — ibm 216 free 36
— — apl 194 osl 26
— — cecill 179 afl 16

In this sense, Table 11 presents the impact of Incomplete licenses.
It is worth to mention that even if we consider the incomplete li-
censes as inconsistent licenses, non-approved licenses (9) presented
a higher impact than Incomplete licenses, for instance, the number
of irregular packages caused by non-approved licenses are 62,154
against 63,329 irregular packages caused by Incomplete licenses on
RubyGems (the ratio of the difference 813/362 is almost 2.5 times
higher). If we compare the affected versions on RubyGems, the
impact of non-approved licenses are almost 69 times higher than
the Incomplete Licenses. In a general way, we also found that NPM
is more affected by Incomplete licenses than RubyGems.

Finally, CRAN packages were highly impacted by Incomplete
licenses, which is mostly due to the lack of a license version. This
behavior turns ∼11% of CRAN packages irregulars, which affects
almost 15% of the published packages.

We recognize that non-approved licenses are dangerous to both
package authors (publishers on package managers) and users – that
create but not explicit publish a package with direct dependen-
cies to published packages – because of the uncertainty whether
the dependencies of the desired-to-publish package are regular or
not. In fact, package publishers should look at the whole depen-
dency chain. However, a few factors might imply in the presence
of such irregularities in package managers, such as the height of
the package dependency tree, and the presence of newcomers at

MSR ’18, May 28–29, 2018, Gothenburg, Sweden R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, D. German

Table 11: Impact caused by Incomplete licenses in each pack-
age manager

Graph Order Metric CRAN NPM RubyGems

Packages

11,366 510,964 135,481
Irregular 1,256 94,515 63,329

Proportion 0.110 0.184 0.467
Affected 1,480 197,626 75,455

Proportion 0.130 0.386 0.556

Versions

11,366 3,539,494 816,580
Irregular 38 825,520 443,072

Proportion 0.003 0.233 0.542
Affected 38 1,639,430 520,836

Proportion 0.003 0.463 0.637

Dependencies
1,086 15,521,508 1,765,288

Irregular 62 1,759,643 1,098,489
Proportion 0.057 0.113 0.622

the open source community, who might not be completely aware
about license constraints.

RQ2 Summary. Non-approved licenses impact packages from
NPM and RubyGems, making packages irregular and affecting
both its direct and indirect dependencies. Non-approved licenses
can be considered more harmful than incomplete licenses since
their impact is higher when compared to the amount of irregular
and affected packages and versions by each License group.

4.3 RQ3. Why developers adopt non-approved
licenses?

To answer this question, we report the results of our survey with
76 package publishers. Our target population is 94% male and 96%
work for the software development industry. About 53% of them
have created or contribute to up to 30 open-source projects (18%
of them have created or contribute to more than 100 open-source
projects). Still, 48% of the respondents believe that about 20% of
these created/contributed open-source projects use a non-approved
license. More interestingly, however, is the fact that 27% of the
respondents have no idea about how many projects they contribute
use a non-approved license. Similarly, in Section 4.1, we showed
evidence that about 18% of the package versions studied use a
non-approved license.

When we asked why do they use a non-approved license, we
found that 26 of the respondents do not care about the specific
license terms. Along this line, one respondent mentioned that “I
choosed WTFPL license because I really don’t care about who and how
use my modules. I share my code with people and it’s a pleasure for
me to just know if someone finds it useful. May be if I wrote something
really great like Facebook’s React I would think about fame”. Also, 17
respondents acknowledged that using a non-approved license was a
naive decision: “I thought I was appropriate”. Still, small projects
seem to be more prone to be licensed under a non-approved li-
cense. Yet, 5 respondents are aware that a non-approved license

makes sense when licensing non-software projects, for instance,
“Because it fits the content of the repository best (it is not a source
code repository, but contains only data)”. Finally, some developers
adopt non-approved licenses because they claim they are simpler
(6 occurrences) or more open (4 occurrences), for instance, one
respondent said that she likes “the idea of WTFPL. Makes everything
pretty clear. You just do what you want..

Right afterwards, we asked whether they are aware of the im-
plications of using a non-approved license; 43% of the respondents
mentioned a lack of awareness. For those who mentioned to be
aware of the implications, we asked them to cite one example of an
implication. Among the answers we found that developers believe
that a non-approved license might limit the adoption of their
software (12 occurrences). As an example, one respondent said that
“If you use a license others have never heard of, others are less likely to
contribute and/or may be wary of using you software.” Code thefts
was also a recurring implication, mentioned by 7 respondents. Fi-
nally, one respondent raised the fact that the main implication of
using a non-approved license is that “it can’t be automatically rec-
ognized by machines to categorize software under any license which
may exclude the software from search results”. This is particularly in-
teresting, since Github helps the project owners to choose a correct
license for their repositories. However, the Github help documenta-
tion also highlight to developers that they are responsible to define
the correct license as we can see on this paragraph: “GitHub pro-
vides the information on an as-is basis and makes no warranties
regarding any information or licenses provided on or through it,
and disclaims liability for damages resulting from using the license
information.”

In the next five following questions, we asked how often do they
(Q9) investigate if the license that you chose conforms with the
license that your project depends, (Q10) do not declare a license,
(Q11) use a non-approved license, (Q12) use a copyright license in
one open-source software, and (Q13) use more than one license
(either approved or not)? Figure 2 shows the results.

4%

11%

37%

25%

32%

91%

63%

47%

45%

44%

5%

27%

16%

29%

24%

Q13

Q12

Q11

Q10

Q09

100 50 0 50 100

Percentage

Response Always Very often Sometimes Rarely Never

Figure 2: How often do you (Q9) investigate if the license
that you chose conforms with the license that your project
depends, (Q10) do not declare a license, (Q11) use a non-
approved license, (Q12) use a copyright license in one open-
source software, and (Q13) use more than one license (either
approved or not)?

This figure shows a couple of interesting information. First, we
can see 46% of respondents “Never” or “Rarely” take into account

Understanding Non-OSI Approved Licenses MSR ’18, May 28–29, 2018, Gothenburg, Sweden

the license used in the software’s dependencies. We believe this
is an important result because, as we discussed in Section 2, li-
censes inconsistencies directly impact any project that depends
upon. With similar implications, 11% of the respondents “Always”
or “Very Often” do not declare a license. One respondent even
mentioned that she “Frequently forget to declare any license and it
seems unimportant.” Similarly, 25% of the respondents “Always” or
“Very Often” use a non-approved license. Finally, 94% mentioned
that they “Never” or “Rarely” use more than one license (either
approved or not). One respondent mentioned that the reasons of
why she uses more than one license is related to the fork-based
model: “TypoPRO is a collection(!) of fonts and each font already has
its distinct Open Source software license from their upstream vendor.
So, TypoPRO stays under (this union) set of upstream licenses.”

RQ3 Summary. 26 respondents do not care about the license
used. Some respondents believe that non-approved licenses are
more open and simpler to use. Among the implications, 12 re-
spondents believe that non-approved licenses can limit the adop-
tion of their software. 46% of the respondents do not take license
into account when choosing a package dependency.

5 IMPLICATIONS
This research has implications for different kinds of stakeholders.
Three of these possible groups are discussed below.
Package managers. Since we observed that both NPM and
RubyGems do not require developers to inform a license, many
packages published on these packages managers either (1) do not
use any license or (2) state a wrong or incomplete license name
(RQ1). This problem not only hinders researchers from conduct-
ing in-depth studies on license usage, but also have the potential
of confusing software developers interested in using the software
package. Package managers, therefore, might introduce mecha-
nisms to prevent the introduction of wrong (or even non existing)
license names.
Researchers. Although software licensing is an established re-
search topic, our notion of non-approved licenses was not yet
fully explored (RQ1) and its implications were unclear (RQ2). Re-
searchers can expand our comprehension of non-approved licenses
in many ways. First, researchers could introduce mechanisms to
automatically detect the use of non-approved licenses. Still, since
packages tend to propagate their licenses over the releases (RQ1),
researchers can create techniques to avoid non-approved license
propagation.
CS Professors. Educators can also benefit from the findings of this
study. Since software license is a common misunderstood topic
among software developers [1], software engineering professors
could bring problems related to license usage to the classroom,
and invite students to discuss possible solutions or compare to the
perception of professional software developers (RQ3). Similarly,
in order to make software licenses more appealing to aspiring
software engineers, professors can use our license inconsistency
graph (RQ2) in advanced data-structure classes, and invite students
to understand license inconsistencies in complex and deeper graphs.

6 THREATS TO VALIDITY
In a study of such proportion, there are always many limitations
and threats to validity. First, we could not retrieve data from 2,140
packages (1,079 NPM packages, 1,052 RubyGems packages, and 9
CRAN packages). This happened because such packages metadata
could not be located. However, these packages represent only 0.04%
of the whole universe of packages from our study.

Second, the normalization process was manual and, therefore,
error-prone. We mitigated this threat using pair-review work. Each
author independently analyzed the same set of licenses, with sub-
sequent conflict resolution meetings. Both the original and normal-
ized license sets are available for future analysis. We choose not to
analyze the external FILE licenses because most of these package
versions are hosted on GitHub and would require manual search
for the license file into the repositories. At CRAN 1,391 package ver-
sions have a file license declared; on NPM, 19,010; and, RubyGems
have more than 20,000 package version using the FILE license.

Third, one might argue that our packages studied might be full
of simple, trivial software projects. However, packages available
on package managers are often more mature, when compared to
software projects hosted on other coding websites such as Github,
which are often personal projects and class projects [9].

Fourth, we rely on the licenses approved by OSI. Even if a license
is commonplace — for instance, we found 4,927 package versions
using the creative commons zero (CC0) license (104 at CRAN, 3,022
at NPM and 1,801 at RubyGems) — we still consider such licenses
as non-approved. Although we are aware that many other institu-
tions such as the Free Software Foundation (FSF) and the Debian
Foundation approve licenses, we decided to stick to OSI approval
because: (1) licenses can be submitted by anyone interested in to
get an OSI approve, and (2) licenses approved by OSI are commonly
used — as we shown in Table 5, there are only few licenses found
in our dataset that were not recognized by OSI.

Finally, we did not double checked whether the license informed
at the packagemanager was, indeed, the same declared at the official
package website. We chose not to validate the license used due to
two reasons: first, the package publisher (which is often a core
member of the project) is in charge of declaring the license used in
a given published version. That is, no one other than the package
publisher would be more confident to state the correct license used;
second, because we manually studied hundreds of thousands of
software packages. These software packages are often hosted in a
third-party coding website (e.g., GitHub or BitBucket), which store
license information using distinct ways, e.g.: Github shows the
license name at the project’s first page (if the algorithm succeed at
inferring the license, which is not always the case); BitBucket, on the
other hand, does not explicitly demand any license when creating
a repository. Additionally, if the project has the proper license file,
it will display the license on the project’s cover page. This problem
only exacerbates when considering license information per version
release. Therefore, due to the lack of standards and our substantial
sample size, performing such manual process would be prohibitive.

7 RELATEDWORK
Recent studies investigated licenses inconsistencies, which is a sim-
ilar to our concept of non-approved licenses. Since non-approved
licenses also introduce inconsistencies, one can see non-approved

MSR ’18, May 28–29, 2018, Gothenburg, Sweden R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Wiese, D. German

as a subset of license inconsistencies. However, we believe that the
implication of non-approved licenses are greater than the known
problems related to licenses inconsistencies.

To the best of our knowledge, our work is the first to analyze the
usage and adoption of Non-Approved licenses. We also discussed
the impact of Non-Approved licenses compared to incomplete li-
censes in the package manager context, which have attracted more
attention from practitioners and researchers, since NPM, CRAN and
RubyGems are growing faster and becoming increasingly popular.
We summarize the related work in terms of licenses maintenance
and evolution and licenses inconsistencies.

Di Penta et al. [4] proposed a method to track the evolution
of software licensing and investigated its relevance on six open
source projects. Most of the inconsistencies found were related to
files without a license. Vendome et al. [24, 27] conducted a large
empirical study investigating when and why developers adopt or
change software licenses. Recently, Vendome et al. [26] performed
another large-scale empirical study on the change history of over
51K FOSS systems to investigate the prevalence of known license
exceptions, presenting a categorization and a Machine Learning-
Based Detection algorithm to do identify license exceptions. San-
tos [20] analyzed a set of 756 projects from FLOSSmole repository
of Sourceforge.net data that had changed their source code distribu-
tion allowances. The author found 88 projects with a “none” license
– which might leave projects exposed and legally unattended – and,
55 times where projects changed their current state of having a
license to one where they have no license.

German et al. [8] investigated how the licenses declared in pack-
ages are consistent with the source code files in the Fedora ecosys-
tem. Manabe et al. [15] extended it by proposing a graph visualiza-
tion to understand those relationships. They found that the GPL
Licenses are more likely to include other licenses, while Apache
Licenses tend to contain files only under the same license. The
authors reported changes from a valid license to none and some
cases where a non-valid license was changed to a valid license.

Wu et al. [30, 31] investigated license inconsistencies caused by
re-distributors that removed or modified the license header in the
source code. The authors described and categorized different types
of license inconsistencies, proposing a method to detect them in the
Debian ecosystem. The authors found that, on average, more than
24% of packages relationship have a “none” license between them,
however this effect was not discussed. Wu et al. [29] also studied
whether the issues of license inconsistencies are properly solved
by analyzing two versions of Debian investigating the evolution
patterns of license inconsistencies, which will disappear when the
downstream projects get synchronized.

Lee et al. [14] compared machine-based algorithms to identify
potential license violations and guide non-experts to manually in-
spect violations. The authors reported that the accuracy of crowds
is comparable to that of experts and to the machine learning algo-
rithm. Interesting to note that approximately 25% of files from 227
projects (79.4 % of projects analyzed) did not have any license.

Almeida et al. [1] conducted a survey with 375 developers to
understand whether they understand violations and assumptions
from three popular open source licenses (GNU GPL3.0, GNU LGPL
3.0 and MPL 2.0) both alone and in combination. The authors con-
front the answers with expert’s opinion, and found that the answers

were consistent in 62% of 42 cases. Although previous work in un-
derstanding software licenses pointed “None” as frequently choose
for files and packagers, neither scenario involved this aspect.

Van der Burg et al. [23] proposed an approach to construct and
analyze the Concrete Build Dependency Graph (CBDG) of a soft-
ware system by tracing system calls at build-time. Through a case
study of seven open source systems, the authors showed that the
constructed CBDGs can accurately classify sources as included in or
excluded from deliverables with 88%-100% precision and 98%-100%
recall, and can uncover license compliance inconsistencies in real
software systems. German and Di Penta [6] presented a method for
open source license compliance of Java applications. The authors
implemented a tool called Kenen, to mitigate any potential legal
risk for developers that reuse open source components. Kapitsaki et
al. [11] compared tools that are used to detect licenses of software
components and avoid license violations, classifying them in three
types: License information identification from source code and bi-
naries, software metadata stored in code repositories, and license
modeling and associated reasoning actions.

8 CONCLUSION
In this paper we conducted a large-scale study on non-approved
licenses, in terms of usage, impact, and adoption. Non-approved
licenses are any license not approved by OSI, the Open Source
Initiative. Software released under a non-approved license cannot
be claimed to be open-source (the original author retains all rights).
Non-approved licenses include licenses with typos, wrong names, or
even curses, or even missing licenses (e.g., when package publishers
do not fill the license information).

When mining data from ∼657k open-source projects, we ob-
served that hundreds of non-approved licenses exist. About 24%
of the packages released used at least one of these non-approved
licenses. The majority of non-approved licenses found are, in fact,
the absence of a license. Still, we found that package publishers
tend to propagate the same license used though package versions.
Non-approved licenses impact packages from NPM and RubyGems
more than Incomplete licenses when we compared to the amount
of irregular and affected packages and versions. Finally, when we
asked packagers publishers about non-approved license, we found
that 46% of the respondents do not take license into account when
choosing a package dependency, some respondents believe that
non-approved licenses are more open and simpler to use. On the
other hand, 12 respondents believe that non-approved licenses may
limit the adoption of their software.

For future work, we plan to investigate the evolution of non-
approved licenses in a fine-grained way (e.g., through commits
instead of version releases). This would deepen our understanding
on why non-approved licenses are adopted. Still, since CRAN de-
velopers might have a more diverse background (e.g., biologists,
mathematicians, among others), we plan to get in touch with them
to understand their motivations behind the usage of non-approved
licenses.

ACKNOWLEDGMENTS
This work is supported by Fundação Araucária; CNPq (406308/2016-
0 and 430642/2016-4); PROPESP/UFPA; and FAPESP (2015/24527-3).

Understanding the Usage, Impact, and Adoption of Non-OSI Approved Licenses MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye. 2017. Do Software Devel-

opers Understand Open Source Licenses?. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). 1–11. https://doi.org/10.1109/ICPC.
2017.7

[2] Jailton Coelho andMarco Tulio Valente. 2017. WhyModern Open Source Projects
Fail. In 25th International Symposium on the Foundations of Software Engineering
(FSE). 186–196.

[3] Eleni Constantinou and TomMens. 2017. An Empirical Comparison of Developer
Retention in the RubyGems and Npm Software Ecosystems. Innov. Syst. Softw.
Eng. 13, 2-3 (Sept. 2017), 101–115. https://doi.org/10.1007/s11334-017-0303-4

[4] Massimiliano Di Penta, Daniel M. German, Yann-Gaël Guéhéneuc, and Giu-
liano Antoniol. 2010. An Exploratory Study of the Evolution of Software Li-
censing. In Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 145–154.
https://doi.org/10.1145/1806799.1806824

[5] Karl Fogel. 2017. Producing Open Source Software: How to Run a Successful Free
Software Project (second ed.). O’Reilly Media. http://www.producingoss.com/.

[6] D. German andM. Di Penta. 2012. AMethod for Open Source License Compliance
of Java Applications. IEEE Software 29, 3 (May 2012), 58–63. https://doi.org/10.
1109/MS.2012.50

[7] Daniel M. German and Jesús M. González-Barahona. 2009. An Empirical
Study of the Reuse of Software Licensed under the GNU General Public License.
Springer Berlin Heidelberg, Berlin, Heidelberg, 185–198. https://doi.org/10.1007/
978-3-642-02032-2_17

[8] D. M. German, M. Di Penta, and J. Davies. 2010. Understanding and Auditing the
Licensing of Open Source Software Distributions. In 2010 IEEE 18th International
Conference on Program Comprehension. 84–93. https://doi.org/10.1109/ICPC.2010.
48

[9] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, DanielM. Ger-
man, and Daniela Damian. 2016. An in-depth study of the promises and per-
ils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.
https://doi.org/10.1007/s10664-015-9393-5

[10] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR 2014). 92–101.

[11] Georgia M. Kapitsaki, Nikolaos D. Tselikas, and Ioannis E. Foukarakis. 2015. An
insight into license tools for open source software systems. Journal of Systems
and Software 102 (2015), 72 – 87. https://doi.org/10.1016/j.jss.2014.12.050

[12] Cory Kapser and Michael W. Godfrey. 2008. "Cloning considered harmful" con-
sidered harmful: patterns of cloning in software. Empirical Software Engineering
13, 6 (2008), 645–692.

[13] Miryung Kim, L. Bergman, T. Lau, and D. Notkin. 2004. An ethnographic study
of copy and paste programming practices in OOPL. In Empirical Software Engi-
neering, 2004. ISESE ’04. Proceedings. 2004 International Symposium on. 83–92.

[14] Sanghoon Lee, Daniel M German, Seung-won Hwang, and Sunghun Kim. 2015.
Crowdsourcing Identification of License Violations. Journal of Computing Science
and Engineering 9, 4 (2015), 190–203.

[15] Yuki Manabe, Daniel M. German, and Katsuro Inoue. 2014. Analyzing the
Relationship between the License of Packages and Their Files in Free and Open
Source Software. Springer Berlin Heidelberg, Berlin, Heidelberg, 51–60. https:
//doi.org/10.1007/978-3-642-55128-4_6

[16] Trevor Maryka, Daniel M. German, and Germán Poo-Caamaño. 2015. On the
Variability of the BSD and MIT Licenses. Springer International Publishing, Cham,
146–156. https://doi.org/10.1007/978-3-319-17837-0_14

[17] OSD. 2018. The Open Source Definition (Annotated). (2018). https://opensource.
org/osd-annotated

[18] Gustavo Pinto, Igor Steinmacher, andMarco Aurélio Gerosa. 2016. More Common
Than You Think: An In-depth Study of Casual Contributors. In IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering, SANER 2016,
Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. 112–123.

[19] Lawrence Rosen. 2004. Open Source Licensing: Software Freedom and Intellectual
Property Law. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[20] Carlos Denner dos Santos. 2017. Changes in free and open source software
licenses: managerial interventions and variations on project attractiveness.
Journal of Internet Services and Applications 8, 1 (07 Aug 2017), 11. https:
//doi.org/10.1186/s13174-017-0062-3

[21] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann. 2013. Improving
developer participation rates in surveys. In 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE). 89–92.
https://doi.org/10.1109/CHASE.2013.6614738

[22] Diomidis Spinellis. 2012. Package Management Systems. IEEE Software 29, 2
(2012), 84–86.

[23] Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M.
German, and Armijn Hemel. 2014. Tracing Software Build Processes to Uncover
License Compliance Inconsistencies. In Proceedings of the 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’14). ACM, New York,
NY, USA, 731–742. https://doi.org/10.1145/2642937.2643013

[24] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-
Vásquez, Daniel German, and Denys Poshyvanyk. 2017. License usage and
changes: a large-scale study on gitHub. Empirical Software Engineering 22, 3 (01
Jun 2017), 1537–1577. https://doi.org/10.1007/s10664-016-9438-4

[25] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares
Vásquez, Daniel M. Germán, and Denys Poshyvanyk. 2017. License usage and
changes: a large-scale study on gitHub. Empirical Software Engineering 22, 3
(2017), 1537–1577.

[26] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel German, and Denys Poshyvanyk. 2017. Machine Learning-based
Detection of Open Source License Exceptions. In Proceedings of the 39th Interna-
tional Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ,
USA, 118–129. https://doi.org/10.1109/ICSE.2017.19

[27] Christopher Vendome, Mario Linares-Vasquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel M. German, and Denys Poshyvanyk. 2015. When and Why
Developers Adopt and Change Software Licenses. In Proceedings of the 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME) (ICSME
’15). IEEE Computer Society, Washington, DC, USA, 31–40. https://doi.org/10.
1109/ICSM.2015.7332449

[28] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories (MSR ’16). ACM, New York,
NY, USA, 351–361. https://doi.org/10.1145/2901739.2901743

[29] Yuhao Wu, Yuki Manabe, Daniel M. German, and Katsuro Inoue. 2017. How
are Developers Treating License Inconsistency Issues? A Case Study on License
Inconsistency Evolution in FOSS Projects. Springer International Publishing, Cham,
69–79. https://doi.org/10.1007/978-3-319-57735-7_8

[30] Y. Wu, Y. Manabe, T. Kanda, D. M. German, and K. Inoue. 2015. A Method
to Detect License Inconsistencies in Large-Scale Open Source Projects. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. 324–333.
https://doi.org/10.1109/MSR.2015.37

[31] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, and Katsuro Inoue.
2017. Analysis of license inconsistency in large collections of open source
projects. Empirical Software Engineering 22, 3 (01 Jun 2017), 1194–1222. https:
//doi.org/10.1007/s10664-016-9487-8

https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1145/1806799.1806824
http://www.producingoss.com/
https://doi.org/10.1109/MS.2012.50
https://doi.org/10.1109/MS.2012.50
https://doi.org/10.1007/978-3-642-02032-2_17
https://doi.org/10.1007/978-3-642-02032-2_17
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1016/j.jss.2014.12.050
https://doi.org/10.1007/978-3-642-55128-4_6
https://doi.org/10.1007/978-3-642-55128-4_6
https://doi.org/10.1007/978-3-319-17837-0_14
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
https://doi.org/10.1186/s13174-017-0062-3
https://doi.org/10.1186/s13174-017-0062-3
https://doi.org/10.1109/CHASE.2013.6614738
https://doi.org/10.1145/2642937.2643013
https://doi.org/10.1007/s10664-016-9438-4
https://doi.org/10.1109/ICSE.2017.19
https://doi.org/10.1109/ICSM.2015.7332449
https://doi.org/10.1109/ICSM.2015.7332449
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1007/978-3-319-57735-7_8
https://doi.org/10.1109/MSR.2015.37
https://doi.org/10.1007/s10664-016-9487-8
https://doi.org/10.1007/s10664-016-9487-8

