This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE
Transactions on Software Engineering

Using Docker to Assist Q&A Forum Users
Luis Melo, Igor Wiese and Marcelo d’Amorim

Abstract—Q&A forums are today a valuable tool to assist developers in programming tasks. Unfortunately, contributions to these forums
are often unclear and incomplete. Docker is a container solution that enables software developers to encapsulate an operating
environment and could help address reproducibility issues. This paper reports on a feasibility study to evaluate if Docker can help improve
reproducibility in Stack Overflow. We started surveying Stack Overflow users to understand their perceptions on the proposal of using
Docker to reproduce Stack Overflow posts. Participants were critical and mentioned two important aspects: cost and need. To validate
their criticism, we conducted an exploratory study focused on understanding how costly the task of creating containers for posts is for
developers. Overall, results indicate that the cost of creating containers is not high, especially due to the fact that dockerfiles are highly
similar and small. Based on these findings we developed a tool, dubbed FRISK, to assist developers in creating containers for those posts.
We then conducted a user study to evaluate interest of Stack Overflow developers on the tool. We found that, on average, users spent
nearly ten minutes interacting with FRISK and that 45.3% of the 563 FRISK sessions we created for existing posts resulted in a successful
access to the corresponding web service by the owners of the post. Overall, this paper provides early evidence that the use of Docker in
Q&A forums should be encouraged for configuration-related posts.

<+

1 INTRODUCTION

uestion and Answer (Q&A) forums, such as Stack

Overflow, has become widely popular among software
developers. Unfortunately, it is not uncommon to find posts
in Q&A forums with problematic instructions on how to re-
produce issues [1]-[4]. For example, Mondal et al. [4] recently
found that 68% of the code snippets they analyzed in Stack
Overflow posts required minor and major modifications.
These findings indicate that addressing reproducibility issues is
important to improve user’s experience in Q&A forums.

This paper evaluates the extent to which container tech-
nology can mitigate the reproducibility problem. Containers
enable developers to encapsulate operating environments,
a key aspect for reproduction. Docker is the main represen-
tative of that technology today, holding 83% of the market
share [5] and supporting Continuous Deployment in software
projects [6], [7]. Conceptually, forum users can document
their issues and fixes more objectively with containers.

The paper reports on a study to assess the feasibility of
using Docker [8] to address reproducibility issues in Stack
Overflow. The study is organized in three complementary
parts: 1) Survey, 2) Exploratory Study, and 3) User Study. The
survey is essential to evaluate the perceptions of developers
about the use of Docker in Stack Overflow. Different factors
can affect developers’ opinion on the idea, including inexpe-
rience with Docker, simplicity of posts, and concerns with
security. The exploratory study is important to validate the
opinion of users during the survey. For example, if posts are
either too complex to reproduce or too simple to reproduce,
developers may feel discouraged to add another layer of
complexity to the posts. The exploratory study was designed
to answer the main concerns developers raised during the

o L. Melo is (currently) with C.E.S.A.R., Brazil. E-mail: [hsm@cesar.org.br.
Igor Wiese is with the Department of Computing, Federal University
of Technology - Parand (UTFPR), Brazil E-mail: igor@utfpr.edu.br M.
d’Amorim is with the Center of Informatics, Universidade Federal de
Pernambuco, Brazil. E-mail: damorim@cin.ufpe.br.

survey. Finally, the user study is important to evaluate, in a
more practical setting, how developers perform when using
a tool we created to facilitate the creation of containers. In
the following, we briefly detail each part of our study.

Survey. The starting step of our feasibility study was to
run a survey to understand the opinion of Stack Overflow
users about our proposal. The main observations we made
from the survey were that 1) developers already have a good
understanding of Docker (e.g., 35.5% of the participants use
it frequently) and that 2) the main concerns of developers
about our proposal are related to the human cost of writing
Dockerfiles and the need to write them.

Exploratory Study. To evaluate the plausibility of the
concerns raised by developers during the survey, we ran an
exploratory study where we analyzed their main concerns.
We analyzed these concerns under the light of 600 Stack
Overflow posts we tried to reproduce with Docker. The key
concerns were need, cost, and realizability. Considering the
aspect need, indeed, we found that a straight answer typically
suffices to address general posts, such as posts asking how to
use a given APIL Reproducibility becomes a more important
issue for configuration-related posts, which are also common
in this domain and whose questions and answers are more
involved. To sum up, we found that none of the concerns
developers raised was a showstopper. As such, we decided
to run a user study to monitor user activity.

User Study. The exploratory study showed that produc-
tivity in creating containers could be improved if a system
existed to support the creation of similar containers. That
motivated us to create FRISK. To start a reproduction session
in FRISK, a user needs to select an icon card, from a card
deck, indicating his choice of container configuration. The
card deck includes the most common configurations we
found in Stack Overflow for server-side web development,
which is the domain we focused on this study. Sessions
created in FRISK are stored in the cloud, and a link for those
sessions can be shared in Stack Overflow. FRISK is an online
integration tool for Docker and Q&A forums; Stack Overflow

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

is a case in point. The goal of the user study we conducted
with FRISK is to evaluate interest of real developers on a
tool that could be used to integrate Stack Overflow and
Docker. Over the course of a month, we monitored user
activity of a total of 563 FRISK sessions we created for a total
of 200 Stack Overflow posts created by the developers we
monitored. We found that users spent nearly ten minutes,
on average, interacting with FRISK and that 255 of the 563
(=45.3%) sessions resulted in a successful access to the web
service spawned with the execution of the container, i.e.,
users were able to build the image, run the container, and
access the corresponding service from a web browser. We
interpreted this result as a positive indication of the potential
of the tool to assist Q&A forum users.

In summary, our results suggest that linking Docker
containers to Q&A forums is an interesting alternative to
improve reproducibility of configuration posts. The arti-
facts produced in this study are publicly available [9] and
FRISK is publicly accessible from the following website
http:/ /frisk.cin.ufpe.br.

2 BACKGROUND AND EXAMPLE

We focused on posts related to server-side web development,
which is a prevalent topic on Stack Overflow [10]. This section
provides background on Docker, web development, and
shows an example on how Docker can be used to facilitate
the reproduction of Stack Overflow posts.

Docker. A Docker image is a set of stacked read-only
layers; each layer defining a set of file differences that
constitute the virtual operating system. A Docker container
is a running image with a new writable layer on top of
the stacked read-only layers, which are loaded from the
corresponding image. This top layer is where changes are
made on a running container [11]. Interested readers can find
tutorials on Docker elsewhere [8], [12].

Web development. Web applications are organized into
two parts. The server-side part is mainly responsible for
processing the business logic, running cpu-intensive compu-
tations, and storing large amounts of data. It handles client
requests and generates corresponding answers, potentially in
different formats (e.g., JSON). The client-side part is mainly
responsible for the user interface, but it can also perform
computations and store small amounts of data.

Example. Let us use the Stack Overflow post number
10191048 [13] as an illustrative example. In this case, a Stack
Overflow user reports an issue when she tries to start a
Nodejs server using the Express web framework with the
Socket.io library. Node.js is a JavaScript runtime environment
supporting code execution outside a browser, e.g., execution
of server-side code. Express is a Node.js-based framework
for writing web and mobile applications whereas Socket.io
is a JavaScript library that supports the implementation of
real-time functionality in web applications.

Figure [Tf] illustrates the code used to report the is-
sue. This code is written in Express. The effect of calling
app.listen(5000) is to make the web application listen
to HTTP/S requests on a given address and port(s) (i.e.,
localhost). Unfortunately, running this version of the code
makes the Node server to launch an HTTP 404 error when the
localhost is accessed through the web browser. The root cause

var express = require('express')

, app = express()

, 10 = require('socket.io").listen(app, { log: true });
app.listen(5000);

(a) Contents of original app.js file from Stack Overflow post [13].

var express = require('express'),

http = require('http');

var app = express();

var server = http.createServer(app);

var io = require('socket.io’).listen(server);
server.listen(8000);

(b) Proposed solution to the issue in app.js.

FROM node:6.9.5

RUN mkdir /app && cd /app
WORKDIR /app

RUN npm install express --save
RUN npm install socket.io --save
COPY . /app

CMD node app.js

(c) Proposed Dockerfile to spawn the web service.

Figure 1: Stack Overflow post 7023052—original file, fixed file,
and dockerfile.

of the problem in this case is that the developer improperly
started the Socket.io. With this code the Socket.io is listen the
port before to create a Express/Node js server, listens to port
5000. Consequently, the server is unable to respond to HTTP
requests, producing the error.

Figure [I| presents the proposed fix to the code. In
this case, the change recommended by the Stack Overflow
developer is to use a standalone HTTP service, as shown in
http.createServer (app). With this
method, it is possible to encapsulate the Express object
(app) in the server object. After the server was created, the
developer can connect the Socket.io to that server by using
the method listen ().

Docker can be used to reproduce the documented issue
and proposed solution above. Figure [lf]shows a Dockerfile
to spawn a web service for the example above. This script
loads, with the FROM command, the Node 6.9.5 runtime on
an Ubuntu image. The script uses the RUN command to create
the directory /app and to change the current directory to
it. Then, the command WORKDIR sets that directory as the
workspace directory on the container. After creating the
workspace, the script installs the necessary dependencies
using the npm package manager. Then, to transfer the code—
only app.Jjs, in this case—from the host machine to the
guest (container), the script uses the command copv. Finally,
the command cMD specifies the command to be executed
when the container is spawned.

Let us start the server, now that we have a dockerfile.
Considering our example, the command docker build

line var server =

-t app S$adir looks for a dockerfile in directory $adir

on the host machine and builds a corresponding image
that will be referred by the name tse-docker. Running
the command docker run -p8081:8080 app creates and
runs a container for that image and maps incoming traffic
to port 8081 on the host machine to port 8080 on the guest
machine, i.e., the container running our server. It is worth

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://frisk.cin.ufpe.br

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

noting that developers using FRISK don’t need to memorize
those command (Section [6.1).

3 FRAMEWORKS, AND RESEARCH

QUESTIONS
This section describes the server-side web frameworks we

focused on, the dataset of Stack Overflow posts we used, and
the research questions we posed in this study.

DATASET,

3.1

We used GitHub Showcases to identify frameworks for
analysis. Showcases is a GitHub service that groups projects
by topics of general public interest, providing usage statistics
for them. The web framework showcase [14] lists the most
popular server-side web frameworks hosted on GitHub
according to their number of stars and forks. Note that this
list is restricted to projects hosted on GitHub.

Table [I| shows the frameworks grouped by the target
programming language. Rows are sorted by the language,
number of stars, and number of forks, in this order. We
restricted our analysis to a relatively small number of
frameworks as the analysis of posts requires human effort.
We selected five frameworks that have over 20K stars
and over 5K forks. We additionally included Meteor as
it has the highest number of stars amongst all frameworks.
Table [I{shows our selection of six frameworks in gray color.
Informally, we found that the selection was consistent with
our expectation of popularity of frameworks.

Frameworks

3.2 AQuestions

To identify questions, we used Data Explorer [15], a service
provided by Stack Exchange [16], a network of Q&A forums.
The query we used is publicly available [17]. We considered
the following selection criteria. (i) We only selected questions
tagged with the name of the framework and with the name
of the programming language we provided. (ii) We only
selected questions not marked as closed. For example, a
question can be closed (by the community or the Stack
Overflow staff) because it appears to be a duplicate. (iii)
We only selected questions that the owner of the question
selected a preferred answer.

As the analysis of questions requires human cognizance,
we determined a limit of a hundred questions per framework.
We prioritized questions in reverse order of their scores and
extracted the first hundred entries. A similar procedure was
adopted in other Stack Overflow mining studies [18]-[22].
The score of a question is given by the difference between
the up and down votes associated with the answers to that
question. After inspecting the result sets obtained with this
method, we realized that some questions, albeit tagged
with framework labels, described issues unrelated to the
framework itself but related to the programming language
it is based on. Considering Rails, for instance, nearly 20% of
the questions returned in the original result set was related
to Ruby (the language) as opposed to Rails (the framework).
To address this issue and complete a set with a hundred
questions, we removed those questions and fetched the next
questions in the result set.

3

Table 1: Stats extracted from the GitHub web frameworks
showecase [14]. Highlighted rows indicate selected frameworks.

Language Framework Stars Forks Webpage
Crystal Kemal 1,273 77 kemalcr.com
C# Asp.Net Boilerplate 2,138 1,162 aspnetboilerplate.com
Nancy 4,777 1,185 nancyfx.org

Go Revel 7,732 1,081 revel.github.io
Ninja 1,575 460 ninjaframework.org

Java Spring 11635 9,155 spring.io
Derby 4,178 240 derbyjs.com

Express 29,136 5,335 expressjs.com

. Jhipster 5,749 1,291 jhipster.github.io
JavaSeript Moan 9714 2912 T eanio
Meteor 36,619 4,612 meteor.com

Nodal 3,940 213 nodaljs.com

Sails 16,189 1,657 sailsjs.com

Perl Catalyst 239 96 catalystframework.org
Mojolicious 1,778 424 mojolicious.org

CakePHP 6,866 3,108 cakephp.org

PHP Laravel 28,436 9,392 laravel.com
Symfony 13,538 5,255 symfony.com

Django 22,822 9,224 djangoproject.com

Python Flas 24,291 7,745 flask.pocoo.org
Frappe” 500 364 frappe.io

Web2py 1,280 655 web2py.com

Hanami 3,487 349 hanamirb.org

Padrino 2,952 471 padrinorb.com

Ruby Pakyow 722 59 pakyow.org
Rails 33,910 13,793 rubyonrails.org

Sinatra 8,553 1,599 sinatrarb.com

Scala Play 8,754 3,035 playframework.com

3.3 Characterization of Questions

This section describes the dimensions we used to characterize
the selected questions: 1) kinds (i.e., what’s their purpose),
2) popularity scores (i.e., how popular they were), and
3) prevalence (i.e., how often they appeared in posts).

3.3.1 Kinds

We manually classified our set of 600 posts following two
steps. In the first step, two software developers analyzed
two disjoint sets of 20 Stack Overflow posts, with the goal
of better defining and discussing the codes (i.e., the kinds of
posts). After this step, we identified two categories: General
and Configuration. The category general includes questions
related to the presentation of the data or a clarification
question about a particular framework feature. The category
configuration includes questions related to the installation
and configuration of the framework. For example, questions
about framework misconfigurations (e.g., insufficient privi-
leges to access files and directories). In the second step, each
researcher analyzed the rest of the 600 posts independently,
followed again by discussion. This step only finished after
reaching consensus on the categorization of each post.

After analyzing the questions, developers identified a
clear pattern to classify each question. For example, the gen-
eral questions we analyzed typically follow the pattern “how
to implement X in framework Y?”. Considering configuration
questions, most of the questions (40.15%) follow the pattern
“how to fix this issue in framework Y?”.

Table 2| shows example questions for each of those
categories. For example, the Stack Overflow question 86653
asks how to format a json object in Rails using the function
pretty_generate () from module json. As another exam-
ple, question 17006309 shows how to sort multiple columns
in a dataset using the Laravel function orderBy. Considering
configuration posts, the question 19962736 reports a case

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

Table 2: Characterization of question kinds.

Question Id Question Answer
86653 How can I “pretty” format my JSON output in Ruby on Rails? Use the pretty_generate() function, built into later versions of
JSON.
§ 17006309, How to use “order by” for multiple columns in Laravel 4? Simply invoke orderBy() as many times as you need it.
=]
% 2260727, How to access the local Django webserver from outside world? You have to run the dev. server such that it listens on the interface
to your network E.g. python manage.py runserver 0.0.0.0:8000
20036520, What is the purpose of Flask’s context stacks? ... This is very handy to implement things like internal redirects.
19962736/ 1 am trying to run statsd/graphite which uses django 1.6, I get Django Type from django.conf.urls import patterns, url, include.
import error - no module named django.conf.urls.defaults
o 11783875 When I run my main Python file on my computer, it works,when I activate ~ Activate the virtualenv and then install BeautifulSoup4.
£ venv and run the Flask Python, it says “No Module Named bs4."
<
5 19189813 Flask is initialising twice when in Debug mode. You have to disable the “use_reloader” flag.
80
& 30819934, When I try to execute migrations with “php artisan migrate” I get a “Class You need to have your migrations folder inside the project
S not found” error. classmap, or redefine the classmap in your composer.json.
18371318 I'm trying to install Bootstrap 3.0 on my Rails app. What is the best gem to Actually you don’t need gem for this, install Bootstrap 3 in RoR:

use? [have found a few of them.

download bootstrap from getbootstrap.com.

where the owner of the question found an error when trying
to import module django.conf.urls.defaults. In this
case, the issue was that the user was using Django version
1.6 which no longer uses that name for the module. The new
module name is django.conf.urls.

3.3.2 Popularity

We used existing metrics to compare the popularity of the
two kinds of Q&A posts we found [23]-[28]. The metrics
were the score of the question—a number that is adjusted by
the crowd according to their appreciation to the question,
the number of views—a number that increases every time a
user visits the question (whether (s)he likes or not), and the
number of favorites—a number that is adjusted every time a
user bookmarks the corresponding question.

We ran tests of hypothesis to evaluate if there was a
difference between general and configuration posts w.r.t.
these metrics considering our final dataset comprised with
100 Stack Overflow posts of each of six web framework
selected in previous step. For a given metric, we propose the
null hypothesis that the distributions associated with general
and configuration questions have the same median values.
The alternative hypothesis being that the corresponding
medians differ. As usual, we first used a normality test to
check adherence of the data to a normal distribution [29].
According to the Kolmogorov-Smirnov (K-S) normality test,
we observed that the data did not follow normal distributions.
For that reason, we used non-parametric tests which do not
assume those distributions. We used two tests previously
applied in similar contexts: Wilcoxon-Matt-Whitney and
Kruskal-Wallis [29]. The use of an additional test enables
one to cross-check results given the inherent noise associated
with non-parametric tests. The null hypotheses was not
rejected in any test we ran, i.e., the p-values were much
higher than 0.05. Considering the metrics we analyzed, there
is no statistically significant difference in popularity between
general and configuration posts.

3.3.3 Prevalence

Figure 2 shows the distribution of general and configuration
questions for each framework. Considering the six frame-
works we analyzed and our 600 posts previously categorized,

100% [=

- £

’ Express Meteor Laravel Django Flask Rails
configuration [general ‘

Figure 2: Distribution of general and configuration questions.
Horizontal line indicates average value (22%) of configuration
questions across frameworks.

it is noticeable that general questions are considerably more
prevalent compared to configuration questions. It is also
noticeable that Meteor manifests the lowest proportion of
configuration questions to general questions. That happens
because Meteor, in contrast to alternative frameworks, pro-
vides preconfigured options and a rich set of libraries built-in.

3.4 Research Questions
We pose the following questions:

e Survey

- RQ1. What are the perceptions of Stack Overflow users
towards the use of Docker to reproduce posts?

o Exploratory Study

- RQ2. How difficult is it for developers with elementary
training in Docker to dockerize Stack Overflow posts?
- RQ3. How big and similar are dockerfiles?
- RQ4. How often can developers dockerize posts?
¢ User Studies

- RQ5. Do Stack Overflow users access and reproduce
posts using Frisk?

We ran different experiments to assess the feasibility of us-
ing container technology (e.g., Docker) to assist Q&A forum
users. The Survey captures the perceptions of developers
about the usage of container technology. The exploratory
study evaluates the main concerns raised by developers
during the survey. Finally, the user study evaluates the
proposed idea with real developers using FRISK, a prototype
system we developed to support the integration of Docker
in Stack Overflow.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://stackoverflow.com/questions/86653/how-can-i-pretty-format-my-json-output-in-ruby-on-rails
https://stackoverflow.com/questions/17006309/how-to-use-order-by-for-multiple-columns-in-laravel-4
http://stackoverflow.com/questions/2260727/how-to-access-the-local-django-webserver-from-outside-world
https://stackoverflow.com/questions/20036520/what-is-the-purpose-of-flasks-context-stacks
http://stackoverflow.com/questions/19962736/django-import-error-no-module-named-django-conf-urls-defaults
https://stackoverflow.com/questions/11783875/importerror-no-module-named-bs4-beautifulsoup
http://stackoverflow.com/questions/19189813/setting-django-up-to-use-mysql
https://stackoverflow.com/questions/30819934/laravel-migrations-class-not-found
https://stackoverflow.com/questions/18371318/installing-bootstrap-3-on-rails-app

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

4 SURVEY

This section describes a survey we conducted with the goal of
evaluating the perceptions of Stack Overflow users towards
the use of Docker for reproducing posts.

4.1 RQ1: What are the perceptions of Stack Overflow
users towards the use of Docker to reproduce posts?

To participate on this survey, we selected active users of five
of the six frameworks from Figure 2| We discarded Meteor as
there is no Docker support for it as of the day of the writing.
Our method to select participants was as follows. For each
framework, we selected 1K users with the best reviewing
scores to posts. We could not send invitations to all 5K
users (1K users * 5 frameworks) as Stack Overflow does not
allow users to publish e-mails on their pages. As such, we
attempted to establish links between Stack Overflow and
GitHub accounts to find their emails. Using this approach,
we identified a total of 1,548 potential participants from a
total of 5K users. Finally, we sent out invitations for a survey.
Participants were encouraged to complement their answers
to questions with text describing their impressions on using
Docker to reproduce Stack Overflow posts. This part was
not mandatory and few participants provided additional
information. The survey questions are as follows.

1) Are you familiar with Docker? (a) Never heard of it;
(b) Have interacted with it a bit; (c) Use it frequently.

2) Do you think executable Dockerfiles could help develop-
ers understanding Q&As from Stack Overflow? (a) Yes;
(b) No; (c) I don’t know.

3) What do you think are the main challenges in using
Dockerfiles at Stack Overflow? (a) Security concerns;
(b) It is time consuming to read and write dockerfiles;
(c) Lack of sysadmin skills; (d) Most Q&As are pretty
straight-forward; (e) I don’t know.

For the first question, the intuition is that it would be
challenging to incentivize adoption if familiarity with the
technology was very low. The second question assesses the
perceived utility of our proposal. Finally, the third question
evaluates technical concerns of users about dockerization at
Stack Overflow. A total of 106 users answered the survey. Of
which, we discarded 13 invalid answers (e.g., auto-reply an-
swers). It is worth noting that not every participant answered
all questions. For example, someone that answered “a” to
the first question would not answer the remaining questions.
However, most participants answered most questions. Table[3|
shows the distributions of the answers to the three questions.
The cells in gray color highlight the choices with the highest
amount of answers for a given question.

Considering question one, we found, with some surprise,
that ~90% of participants who answered the survey were
familiarized with Docker and a large proportion of them
(35.5%) use Docker frequently.

Considering question two, 39.2% of the participants
were optimistic about using Docker to reproduce Q&A
posts. Participants in this group mentioned that Docker
would help to reproduce complex environments and version-
pinned questions. It is worth mentioning that most of those
participants (95% of them) were familiar with Docker (i.e.,

Table 3: Distribution of answers to survey questions.

Answers

a b C d e
Question 1 9.7% | 54.8% @ 35.5% - -
Question 2 | 392% 21.6% | 39.2% - -
Question 3 12.6% | 32.3% 15.0% | 33.1% 7.1%

answered “b” or “c” to question one). However, the chart also
shows that 21.6% of the participants do not think that Docker
would help. For example, some developers of the Express
framework commented that, when the post did not depend
on server-side features, Docker would not be necessary.

Considering question three, developers pointed to effort
(option“b”) and need (option “d”) in 32.3% and 33.1% of
the answers, respectively. Despite the optimism signaled
by developers, a large proportion of them answered that
reading and writing dockerfiles could be time-consuming
and posts could be either straight-forward or not require
fully-functioning code for understanding. Participants that
selected option “c” commented that creating dockerfiles
could be challenging to new developers. A relatively smaller
proportion, but still significant, of the participants (12.6%)
mentioned concerns about security (option “a”). However,
none of them specified the reason why.

Answering RQ1: A total of 39.2% of the participants
in the survey believe that Docker could help Stack
Overflow users address reproducibility issues. The

biggest concern among the 21.6% of the participants

who were skeptical are cost and need.

5 EXPLORATORY STUDY

To better understand the actual issues in creating containers
for Stack Overflow posts, we designed an exploratory study
where the first author of this paper and another developer
created containers for a selection of posts.

Originally, the concerns we considered in the study were
need, cost, and realizability. However, prior work already
reported findings related to need so we focused on the
later two concerns. Treude et al. [30] and also Beyer and
Pinzger [31] found that developers often find solutions to
answers to general posts by looking at documentation and
tutorials. Informally, we confirmed the same findings during
the experiment we conducted to answer RQ4. However, we
found that, despite demanding less changes to code artifacts
(see Section [5.2), configuration posts are more involved than
general posts and would benefit of reproduction scripts.
Therefore, considering the concern need, our conclusion is
that containers are helpful to reproduce configuration posts.

The exploratory study described in this section focused on
cost, the top concern raised by the survey’s participants, and
realizability, i.e., the ability to translate natural language posts
into containers. Research questions RQ2 and RQ3 relate to
the concern cost whereas question RQ4 relates to realizability.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

5.1 RQ2: How difficult is it for developers with ele-
mentary training in Docker to dockerize Stack Overflow
posts?

The goal of this research question was to evaluate the ability
of developers to create containers from Q&A posts in a
pessimistic scenario. This experiment involved students
from a grad-level Software Testing course at the authors’
institution. No student in the class had previous experience
with Docker but most of them have heard recently about
it. We dedicated a 2h in-lab class to train students—1h for
Docker and 1h for the basics on server-side web development.
Given the limited time, we restricted the training to Flask for
its simplicity and familiarity of many students with Python.
All students had access to a similar desktop computer. After
the training session, students met twice to run the actual
experiment. The activity was realized in class with the
supervision of the first and third author of this paper.

We assigned each student the task of reproducing five
Stack Overflow posts. We used the first 30 minutes of the
class to instruction. After that, we asked students to prepare
the scripts and a short critique of the approach by e-mail
writing pros and cons. They had 90 minutes maximum for
that. To guarantee the correctness of each script reproduced,
we used the answer selected by the original poster of the
question as ground truth.

OO

S2 S3 S4 S5 S6 S7

S.1 . . .
’ CorrectUIncorrect 1 Skipped ‘

Figure 3: Students’ performance in preparing dockerfiles.

Figure [3| shows a bar plot indicating the performance
of the students enrolled in the class. Two of the eight
participants did not submit an answer (5.4 and S.8). Four
participants submitted two correct answers, and two sub-
mitted one correct answer. The main reasons reported by
students for not being able to reproduce an issue were
1) lack of knowledge in the language or the framework and
2) incomplete excerpts of code in Q&A posts. Students firmly
indicated in their reports that the training session on Docker
was enough for the assignment, but they felt inexperience in
the target programming language and framework.

Answering RQ2: External factors (e.g., language
experience, incomplete excerpts, and interest of
students), which are hard to control, clearly affected
results. However, still, we believe that interested
students performed relatively well in the assignment.

5.2 RQ3: How big and similar are dockerfiles?

We used size and similarity of dockerfiles as proxies of
complexity with the goal of better estimating human cost.
This section elaborates on our findings. Figure] shows tables
detailing statistics on these metrics.

Table 4: Size and similarity of dockerfiles.

Same Size (LOC) Sim.
Express 48.8% 6.6 90.95%
Laravel 100% 12.0 100.00%
General I?'ango 41.1% 119 93.63%
Flask 47.5% 114 96.38%
Rails 55.0% 154 92.44%
Express 42.9% 6.4 92.39%
)) Laravel 84.2% 11.7 95.50%
Configuration]I?'ango 57.1% 11.1 92.39%
Flask 84.0% 13.2 96.78%
Rails 75.0% 153 95.07%

(@) Number of cases dockerfiles are identical (Same),
Average size of dockerfiles (Size), and average similarity of
dockerfiles (Sim.). Table [5| shows the absolute numbers of
questions for each pair of framework and category.

Files Churn #Ins. #Mod. #Del.

Express 1.5 94 38 55 01

Laravel 37 254 186 47 21

General Dﬂ'ango 39 201 183 1.8 0.0
Flask 1.6 87 57 29 01

Rails 80 221 218 02 0.1

Express 1.2 99 4.0 49 1.0

) . Laravel 1.8 6.8 53 1.3 0.2
Configuration Django 24 35 20 15 00
Ffask 1.6 47 25 1.8 04

Rails 1.0 32 3. 02 00

(b) Application artifacts (e.g., source and config. files)
modified in boilerplate code when preparing containers.

Table [4a| shows results grouped by frameworks. Column
“Same” shows the percentage of cases where the dockerfile
was identical to the reference file (see Section [5.3). In those
cases, the developer only changed application files (e.g.,
source and configuration files) to run the container. Columns
“Size” and “Sim.” show, respectively, size and similarity of
dockerfiles of a given framework. Size refers to the average
size across all dockerfiles whereas similarity refers to the
average across all pairs of dockerfiles. We used the Jaccard
coefficient [32] to measure string similarity. We did not embed
application code within dockerfiles.

Note that in many cases it was unnecessary to modify the
reference dockerfile to reproduce the post. Laravel was an
extreme case: all 40 scripts from the general category for this
framework were identical to the reference dockerfile; changes
were made only in application files. This peculiar case
happens because, for some frameworks, including Laravel,
the corresponding boilerplate project comes with a built-in
package manager [33] that resolves dependencies on-the-fly.
For frameworks other than Laravel and Express, the number
of identical dockerfiles was smaller for general posts than
it was for configuration posts. The typical reason for these
cases is that the dockerfile includes instructions to create a
database that is necessary to reproduce the post.

Considering size, results shows that dockerfiles are
typically very short, ranging from a minimum of 6.6LOC in
Express to a maximum of 15.4LOC in Rails. Besides, the size
of dockerfiles for Express is significantly smaller compared to
other frameworks. That happens because the Docker official
image of Node.js [34], which Express builds on, comes with
a fairly complete set of packages that an application needs to

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

run. Finally, results show that dockerfiles are very similar to
each other with an average similarity score above 94%.

Table [b] reports the number of changes made in ap-
plication files relative to the boilerplate code we used as
a reference to create new containers. These files do not
include the dockerfile. Column “# Files” shows the average
number of files modified or created relative to the reference
code. Column”Churn” shows code churn as the amount
of lines added, changed, or deleted while reproducing the
post. Columns “#Ins.”, “#Mod.” and “#Del.” specify the
kind of change. All reproduced posts modified at least one
application file and the changes were higher in general posts
compared to configuration posts. In configuration posts the
change was typicall a minor tweak to fix the problem whereas
general post required more complete descriptions.

Answering RQ3: Results indicate that dockerfiles to
reproduce posts are typically very small and similar
to each other. Considering application files, general
posts change more files and make more changes on
each file compared to configuration posts.

5.3 RQ4: How often can developers dockerize posts?

The goals of this research question are i) to estimate the
number of posts that can be translated into executable scripts
and ii) to understand the reasons that prevent the creation of
scripts.

AsMondal et al. [4], we involved two software developers
to carry out the task of writing dockerfiles to the 600 posts
from our dataset. Both developers had three years of profes-
sional experience in web development. One developer had
working experience with JavaScript and another developer,
the first author of this paper, had working experience with
Laravel (PHP) and Django (Python). To create containers,
we used a Debian 8.6 Jessie machine [35] with docker and
docker-compose [8] installed.

The task of writing a dockerfile for a given post consists
of the following steps: (1) understand the post, (2) reproduce
the post on the developer’s host machine, (3) create the
dockerfile, and (4) spawn the container and check correctness
according to the instructions in the post. For general post
(see Section [.3), developers were asked to produce one
dockerfile with the solution to the question. For configuration
posts, developers were asked to produce two dockerfiles:
one to reproduce the issue and another to illustrate the fix.
Developers used stack traces, when available in the posts, to
validate the correctness of their scripts. For example, if the
post reports an issue, the developer used the trace to validate
both the “issue” script and the corresponding “repair” script
for the presence (respectively, absence) of the manifestation in
the trace. Developers also validated each other’s containers
for mistakes. While preparing those reproduction scripts,
the two developers noticed that the files they produced
were very similar. For that reason, they prepared per-
framework template files to facilitate the remaining work.
For dockerfiles, this task was manual. For application code,
three of the frameworks used—Django, Laravel, and Rails—
already provide tools to generate boilerplate code.

7

Table 5: Breakdown of problems found while generating
dockerfiles. Column “¥-P*” indicates the total number of posts
reproduced per framework.

| Unreproducible | Costly |
¥ P1 P2 P3 P4 P5 P6 X-P*
Express 71 - 1 26 1 - - 43
— Meteor 91 91 - - - - - 0
£ Laravel 72 - 17 13 2 - - 40
£ Django 76 - 5 12 8 - - 51
v Flask 84 - 2 19 5 - - 58
Rails 74 - - 32 - 2 - 40
Total 468 232
= Express 29 - 12 - 1 - 16
S Meteor 9 9 - - - - - 0
® Laravel 28 - 9 - - - 6 13
5% Django 24 - 8 - - 7 3 6
ié Flask 16 - 4 - - - - 12
S Rails 26 - 11 - - 1 5 9
Y “Total 132 56

As expected, some posts were not reproduced because
they were unreproducible or because they were too expen-
sive to reproduce. Table [5| shows the breakdown of those
problems per framework and category. Column “>” shows
the total number of posts associated with a given framework.
Columns “P1-P6” show the number of posts that were not
reproduced due to a given problem. Column “3-P*” shows
the total number of posts developers reproduced with Docker
using the setup we described. A dash indicates that no
problem of a certain kind was found for a given framework.

The problems developers found are as follows: P1 (Un-
supported): A feature necessary to dockerize the post is
still unsupported. For example, as of this date, Docker
does not support a particular feature from tar necessary
to run Meteor [36], [37]. P2 (Lack of details): The question
lacks important details to reproduce the problem (e.g., post
26270042). P3 (Conceptual): The question is a conceptual
question about the framework usage (e.g., post |[20036520).
P4 (Clarification): The question is a clarification question about
the framework (e.g., post 14105452). P5 (User interaction):
Console interaction is necessary to create a container (e.g.,
post 4316940). P6 (OS-specific): The post is specific to a non-
Linux OS (e.g., post 10557507).

It is important to note that, given our limited resources,
we decided to restrict our study to posts that could be
reproduced without console interaction and to posts that are
specific to Unix-based distributions. Consequently, problems
P5 and P6 can be addressed. Only a small fraction of posts
(4.1%) did not satisfy these two constraints.

We also note that a good number of posts (69) were not
reproduced because the description was unclear (P2). We did
expect that textual descriptions could lead to this problem,
but still we were surprised by the considerable number of
cases, 11.5% of the total. Overall, developers translated 49.6%
of the general posts and 43.2% of the configuration posts.
If we remove from these counts posts that are, in principle,
reproducible (P5 and P6), we increase those numbers to 49.8%
and 52.7%, respectively. If we discard conceptual posts (P3),
the numbers of general posts reproduced becomes 63.4%. If
we discard unclear posts (P2), the numbers of configuration
posts reproduced becomes 63.6%.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://stackoverflow.com/questions/26270042
https://stackoverflow.com/questions/20036520
https://stackoverflow.com/questions/14105452
https://stackoverflow.com/questions/4316940
https://stackoverflow.com/questions/10557507

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

Answering RQ4: Without soliciting additional
information to posters, a total of 48% of the posts
could be dockerized. Problem P2 (lack of details)

affected configuration posts relatively more
compared to general posts. This is evidence of the
importance of reproducibility in this context.

6 USER STUDY

This section presents the user study we conducted on FRISK,
a tool we developed to enable rapid creation, modification,
and sharing of Docker containers. The goal of FRISK is to
facilitate the developer task of solving Stack Overflow issues
to server-side development problems.

Section |6.1| describes the basic functionalities and organi-
zation of FRISK. Section [6.2] describes the design of the user
study, e.g., it describes how we contacted Stack Overflow
users to validate FRISK’s usability. Finally, Section [6.3]reports
results showing how developers interacted with FRISK.

6.1 FRISK

FRISK is a prototype tool designed to help developers with
minimal background on Docker to create, maintain, and
share containers. Our conjecture is that a tool like FRISK could
be useful to Stack Overflow by linking FRISK's sessions to
posts. The tool is available onlin and does not require user
authentication as to encourage developer’s adoption. Similar
rationale is used in JSFiddle [38], a system to facilitate front-
end development. A tutorial of FRISK is available online [39].

6.1.1 Main functionalities

Figure fa] shows the home page of FRISK. A user should
notice two features: 1) there are no login credentials to access
the system and 2) the access to FRISK is made upon the
selection of a card that defines what needs to be included in
the container (e.g., library or runtime). If the desired option
is not available, the user can select the empty card and
configure the dockerfile himself.

Figure [4b| shows the UI of the main page of FRISK. For
space, we did not show the left pane of the screen showing
virtual machines associated with the session. This session
only contains one virtual machine. This screen is produced
when the user selects the third template card (Express.js)
on Figure By selecting that template, FRISK creates a
dockerfile declaring all dependencies declared in the card.
For example, that card includes a dependency for the Jade
template engine [40] that translates page descriptions into
HTML. FRISK enables modifications in the dockerfile and the
boilerplate code associated with the template. Observe the
treeview on the top right corner of the image.

The screen is divided into three panes. The left pane—
omitted for space—shows the created virtual machines
for the current session and a button to create new ones.
(Additional virtual machines can be be useful to prototype
microservices.) By default, one virtual machine is created
on session entry. The other panes focus on one selected
machine, which is highlighted on the left pane. The central

1. http:/ /frisk.cin.ufpe.br

Frisk!

Prototyping your server-side project made easy

Frameworks
Express.js Express.js Rails 5
o Nodejs:69.5 o Nodejs:6.9.5 o Ruby:253
o Database: None o Database: None ‘o Database: SQLite 3
e Template Engine: None o Template Engine: Jade Template Engine: ERB
(a) Home page.
ssh ip10-2-71-4-bhetq3ip13109b232i0g@direct pg.docker hsm.cor [
[[T
&

x.jode’, {pageData: {name: ['Hello', "World'1}D);

(b) Main page.

Figure 4: FRISK’s UL

pane provides a command shell and buttons to interact with
the selected machine whereas the right pane shows a simple
editor for the files created by the template. In contrast to
changes in dockerfiles, updates made directly on the shell
from the command line (e.g., using apt-get install) are
not persistent. Without these templates, users would have to
prepare dockerfiles and source files from scratch.

A typical FRISK scenario of use consists of selecting
a template, modifying necessary files on the editor panel
(at the right of the screen), clicking the build button to
create a Docker image, clicking the run button to spawn
the corresponding Docker container (referring to the image
created last in the session), and, finally, clicking the share
button to generate a URL for the session. The original fork of
“Play With Docker” does not implement these buttons. We
decided to create them to improve usability.

When a user accesses the URL created with the share
button, FRISK creates a copy of the corresponding files and
creates a container to isolate that session from other users,
who could modify the corresponding containers however
they want in their own sessions. Using these URLs, Stack
Overflow users can recover FRISK sessions and visualize
solutions to posted issues.

6.1.2 Implementation details

FRISK is implemented as a fork of “Play With Docker” [41],
[42], a system recently sponsored by Docker Inc. to train
people on Docker. Compared with “Play With Docker”,
the main differences of FRISK are 1) the ability to share
sessions, 2) the ability to bootstrap sessions from templates,
and 3) the availability of a toolbar including buttons to
run Docker commands with default parameters. We noticed
while running this user study that changing those parameters
was rarely necessary. Consequently, users can use the tool

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://frisk.cin.ufpe.br

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

Table 6: Data obtained from FRISK analytics.

Framework Duration #Sessions Builds Runs Accesses
Django 13m4ls 90 62.22% 51.11% 17.78%
Express 9m49s 90 68.89% 58.89% 55.56%
Flask 9mb59s 175 86.86% 74.86% 49.14%
Laravel 11m26s 105 87.62% 74.29% 48.57%
Rails 11m38s 103 86.41% 54.37% 50.49%
total. 56m33s 563 - - 45.29%
avg. 11m19s 112 78.40% 62.71% 44.30%

without much knowledge on Docker commands. It is also
worth noting that FRISK runs as a Docker container and
the containers created with it run inside that container.
Consequently, the concern that 12.6% of participant raised
on question 3(a) of the survey has no basis as our tool runs
on an isolated environment on our cloud servers.

6.2 Study Design

This section elaborates on the design of a user study to assess
the willingness of Stack Overflow users in adopting FRISK,
which could, conceptually, be used to link Docker containers
to Stack Overflow.

We initially considered the idea of asking developers
to prepare FRISK sessions, but, we realized people would
likely be discouraged to participate. Although we believe
the effort to prepare sessions would not be high, we thought
people would have no clear incentives for doing that work
on a system they did not know. Instead, we planned to
ask people to evaluate FRISK sessions that we created for
the Stack Overflow posts they created. The rationale is that
developers would relate to their work, and they could play
from a real example that they could modify. Thus, we created
FRISK sessions for previously-created posts, sent e-mails to
developers and added comments to posts as to advertise the
FRISK solution, and then monitored user activity.

We prepared FRISK sessions for a selection of
configuration-related posts. Each session reproduces the
preferred answer to a given Stack Overflow question. In total,
we prepared 100 FRISK sessions, 20 for each framework. The
rationale was to identify experienced developers interested
in the high-quality posts they were involved. For these posts,
we contacted the question makers and respondents.

Our initial attempt to advertise the FRISK session was to
edit the preferred answer on Stack Overflow adding a link to
the FRISK session. Unfortunately, we realized after-the-fact
that the Stack Overflow policy rejects posts that may look
like a tool advertisement. As a consequence, the updates we
created were dismissed by the Stack Overflow community.
To address that, we contacted developers through e-mails
and comments in Stack Overflow. In both cases we provided
a link to the FRISK container, explained what it offered, and
asked people to try the tool. For the comments, we did not
name the tool as to prevent rejection of the post.

6.3 Do Stack Overflow users access and reproduce
posts using Frisk?

This research question evaluates how Stack Overflow users
interact with FRISK. We used proxy metrics to measure
interest of users. Table [f] summarizes results, broken down

9

by framework. Column “Duration” shows the average
time users spent interacting with FRISK. The period of
interaction begins from the point the user accesses the URL-
created to share the session-and stops at the moment of
the last interaction-we looked for inactivity in the logs.
Column “#Sessions” shows the number of sessions accessed
for a particular framework. Columns “Builds”, “Runs”,
and “Accesses” show, respectively, the percentage of cases
(i.e., fraction of number from column “#Sessions”) where
users clicked the build button, the run button, and the link
generated to access the running service on the browser. Note
that the percentages must not increase as one can only run a
container if she has built the image and one can only access
the service if she has ran the container.

We found surprising the interest of developers in Flask,
given that this is the least popular framework among the
five we selected [43]]. Looking at column “Accesses”, one
can observe that a total of 255 accesses were made. We were
also surprised that Django, which is another Python very
popular framework in this group, was the case with the
lowest rate of accesses by developers. We conjecture that
the amount of training in a given framework influenced the
number of successful accesses, which is our proxy for interest
in FRISK. Recall that the participants are trained developers
who prepared answers to posts we dockerized.

Finally, we noticed a relatively high gap between columns
“Runs” and “Accesses”, provided that to access the service—
and count one access—FRISK users only needed to click on
a link after spawning a container. Observe the values of
these columns on the row for Laravel. One possible reason
for that is that users are missing the URL link to make an
HTTP request to the running service. This link is dynamically
created after the container starts to run.

We observed from these results that developers interacted
with the system for a reasonable amount of time (~10m).
FRISK received a substantial number of user accesses over
the period of a month and, considering the number of posts
we advertised (563), many of these accesses resulted in an
access of the corresponding web service (~45%).

Of the 563 FRISK sessions we created for Stack
Overflow posts, ~45% resulted in an access to the
corresponding web service that required the user

going through a sequence of steps in the tool.

Overall, we believe that the observations made during
this experiment provides early evidence on the interest of
the community in FRISK as a tool that could be used to link
Docker and Q&A forums, such as Stack Overflow.

7 THREATS TO VALIDITY

The main threats to validity of this study are the following.

External Validity. The extent results can be generalized
is limited by our dataset, which includes Q&A posts from
a selection of web frameworks. In principle, there could
be frameworks and posts with different characteristics that
could lead to different findings. To mitigate those issues, we
selected the six most popular frameworks, according to a
recent showcase from GitHub and questions described in

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

Section It remains to evaluate the extent to which our
observations would change when using different frameworks
(e.g., frameworks not in the listing from Figure [I) and
different criteria for selecting questions for each framework.

Another threat is related to the generalization of the
templates prepared in this study. In principle, there could
be scripts unfit to those templates, i.e., scripts that would
require significant changes. Another threat is related to the
number of cases we used to build the template. Developers
considered a relatively small number of circumstances for
preparing those scripts and validated them against a large
number of scripts.

Internal Validity. Our results could be influenced by
unintentional mistakes made by humans involved in this
study. For example, students were involved in a user study,
whereas developers manually categorized questions in diffi-
culty levels and elaborated dockerfiles. All those tasks could
introduce bias. We used Card Sorting [44] to mitigate the
problem of incorrectly categorizing questions. To make sure
that the scripts were correct, developers were instructed to
strictly follow the preferred Q&A post answers to reproduce
similar problems.

We also encouraged developers to do their best to
reproduce as many questions as possible, noting that one of
the authors was one of the developers. As for the answer
of students in the user study, we analyzed their responses
carefully, comparing them with the solution prepared by the
instructors. It is important to note that all artifacts produced
during this study are publicly available for scrutiny [45]. Fi-
nally, the monitoring infrastructure that we used for tracking
FRISK usages did not take into account the possibility of a
user accessing the same session multiple times. However, we
manually analyzed the logs and did not notice a high number
of accesses for individual FRISK containers, suggesting that
that was not an issue.

Construct Validity. We considered several metrics in this
study that could influence some of our interpretations. For
example, we used metrics of document similarity to assess
how (dis)similar the dockerfiles produced by developers are.
To mitigate the bias associated with the metric selection, we
used multiple metrics and confirmed that the similarity was
very high as not to compromise corresponding conclusions.

8 DiscussION

Our results suggest that the fears developers manifested
during our survey (Section [4) were not all justified. Devel-
opers mentioned concerns of cost in writing dockerfiles, but
that task has shown to be short. The artifacts involved in
a post are similar to each other (Section [5| RQ3) and that
enabled the construction of templates—including reference
dockerfiles and boilerplate code—that allows developers to
be more productive in this task.

Developers also manifested concerns about need of using
Docker in that context. We found that was the case for
the posts in the general category. However, there is an
important group of post for which solutions are non-trivial,
and integrating Docker could be helpful. The study of Horton
and Parnin [46] corroborates that. Many code snippets they
analyzed from GitHub required non-trivial configuration-
related changes to be executed, including missing depen-
dencies, misconfigured files, reliance on a specific operating

10

system, or some other environmental issue. In general, our
results were also consistent with the Mondal et al. [4], since
we also found a similar number of posts that are reproducible
(around 60%). Finally, developers also manifested concerns
with security, but FRISK containers run on the cloud so
compromising the user space is not possible.

Overall, our conclusion is that the use of Docker should
be encouraged for configuration-related posts, which are
those that appear to be more technically involved. Note
that although FRISK is a working prototype, there are many
features that can be added to the tool to make it more useful.
For example, we plan to extend FRISK in the near future
with additional features such as improved text editor and
debugging support. However, we believe that our results
provide early evidence of 1) the usefulness of FRISK and 2)
the important of linking Docker and Stack Overflow.

9 RELATED WORK

We organized related work in two groups—work related to
educational tools and collaborative IDEs and work related to
mining repositories.

9.1 Educational tools and Collaborative IDEs

Tools such as Repl.it [47] and JSFiddle [38] provide support
to create and share self-contained code examples. These
platforms are great for teaching, but they are not well
suited for the creation of complex environments, including
databases, web servers, etc. The configuration posts that
we analyzed in this paper involve at least one or more of
these aspects. Collaborative IDEs, such as Cloud9 [48] and
CodeAnywhere [49], can, in principle, build more complete
local environments but these are private, making sharing
more difficult. It is important to note that exploring live
collaboration seems an important feature to have in this
context that should be explored in FRISK.

9.2 Mining repositories

We elaborate below work that reports on issues in repository
data and work that proposes ways to fix those issues.

Recent work studied various aspects of development
behavior manifested through Stack Overflow data. For
example, Yang et al. [1] criticized Stack Overflow code
quality, indicating that code is written mostly for illustrative
purposes and “compilability” is not typically considered.
Terragni et al. [2] and Balog et al. [3] also found that
compilation issues are common. Bajaj et al. [24] analyzed
Stack Overflow questions to understand common difficulties
and misconceptions among JavaScript developers. They
focused on a restricted domain; in their case JavaScript, in
our case server-side frameworks. In a different study, Treude
et al. [30] found that often answers to questions become a
substitute for official documentation.

Considering the general category of questions, the re-
sults we found are consistent with theirs. Allamanis and
Sutton [50] automatically analyzed arbitrary Stack Overflow
questions using standard data mining techniques. In contrast
to them, we explored a narrower domain and involved
humans in the analysis of questions. Beyer and Pinzger [31]
presented an automatic approach to classify documented

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

Transactions on Software Engineering

Android issues in Stack Overflow using the Apache Lucene
search engine [51]. They used manual classification of
questions using Card Sorting as we did but for a different
reason—to build the ground truth to base the computation of
accuracy of automatic classification techniques. The idea is
complementary to ours. Searching for good post candidates
for creating containers is could help engage developers in
using FRISK. Yang et al. [52] automatically analyzed code
snippets from Stack Overflow to measure how often these
snippets originate from open source projects. They found that
in many cases the link could be recovered. One interesting
avenue of future work is to slice minimal FRISK containers
from those projects.

Recent work proposed solutions to existing problems
in Stack Overflow or GitHub. For example, Terragni et
al. [2] proposed CSNIPPEX, a technique to automatically
transform Stack Overflow code snippets into compilable Java
code. Their technique looks for fixes to compilation errors,
such as missing import declarations. More recently, Horton
and Parnin [46]] proposed Gistable, a tool to automatically
transform Python code snippets from GitHub into runnable
Dockerfiles. As CSNIPPEX, their tool also makes simple
transformations, if necessary, to repair the Gist code. Dif-
ferently from CSNIPPEX, Gistable tries to write Dockerfiles
from a given Stack Overflow post, creating a large database
of Dockerfiles based on real-world questions. Horton and
Parnin [53] improved Gistable proposing DockerizeMe, a
technique for inferring the dependencies needed to execute
a Python code snippet without import error. In contrast
to Gistable, FRISK provides an infrastructure for sharing
solutions and focuses on problems (or solutions to those
problems) that may require multiple files and services (e.g.,
database, templates) to demonstrate those problems whereas
Gistable focuses on compiling self-contained snippets. Finally,
Balog et al. [3] proposed DeepCoder, a technique that uses
Deep Learning to synthesize code from Stack Overflow
code snippets. In principle, DeepCoder could capitalize on
better code snippets to improve code synthesis. These works
provide evidence on the importance of writing quality code
at Q&A forums. Note, however, that high-quality code alone
is insufficient to demonstrate certain kinds of issues. This is
noticeable on the configuration questions mentioned in this
paper. Executable scripts can help on that.

9.3 Studies about the Docker Ecosystem

Different aspects of the Docker ecosystem such as under-
standing the robustness of Dockerfiles and its adoption in
Software Engineering were recently studied. For example,
Cito et al. [6] conducted an exploratory study to charac-
terize issues found in dockerfiles. The study found that
most common issues (28.6%) arise from missing version
pinning, and 34% of 560 Dockerfiles checked were not built
correctly. This study also sheds light on the reproducibility
problem we focused on this paper, but they focused directly
on dockerfiles as opposed to their use to address server-
side questions. Recall that FRISK creates dockerfiles from
templates. Consequently, unless the developer needs to
customize dependencies, version-pinning issues would not
be in effect as the files would be likely consistent.

Hassan et al. [54] proposed RUDSEA, an approach to help
developers update container image configuration files more

11

efficiently, while Zhang et al. [7] conducted a large-scale
study on Docker Hub/GitHub to comprehend the use of
container technology in Continuous Integration workflows.
Although the focus of these studies are different from ours,
their findings indicate that the use of tools like Docker is
important in Software Engineering.

10 CONCLUSIONS

This paper reports on a study to asses the feasibility of using
Docker to reproduce Q&A posts. We focused on posts related
to server-side development, which is an important applica-
tion domain [10]. This is a timely and important problem
given the constant pressure for increased productivity in this
domain [55] and the observation that web developers heavily
rely on Q&A [56] forums nowadays.

Our results show that reproduction scripts would help the
most to address configuration posts and that the presence
of this kind of post is not uncommon. Furthermore, we
observed that Stack Overflow users support the idea to use
container technology to facilitate the reproduction of a post.

We found that the task of preparing containers is not very
costly, especially when there is automated tool support. We
developed a tool, named FRISK, to facilitate that step. The tool
enables Stack Overflow users to create and share containers.
In summary, our results provide early evidence that the
integration of reproduction scripts (e.g., Docker scripts) in
Q&A forums (e.g., Stack Overflow) should be encouraged in
certain cases, such as those involving configuration posts.

As future work, we want to investigate the use of FRISK in
other contexts, including training students, training profes-
sionals in new technologies, and outsourcing debugging
activities. We also want to add new features to the tool
as cooperative edition of FRISK sessions, language-specific
editors with auto-complete support, and a debugger.

ACKNOWLEDGMENTS

This research was partially funded by INES 2.0, FACEPE
grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17,
CAPES grant 88887.136410/2017-00, and CNPq grant
465614 /2014-0. Luis was supported by the FACEPE/CAPES
fellowship number PBPG-1175-1.03/16.

REFERENCES

[1] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
an analysis of stack overflow code snippets,” in MSR. ACM, 2016.

[2] V. Terragni, Y. Liu, and S.-C. Cheung, “Csnippex: Automated
synthesis of compilable code snippets from qé&a sites,” in ISSTA,
2016, pp. 118-129.

[3] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and
D. Tarlow, “Deepcoder: Learning to write programs,” CoRR, vol.
abs/1611.01989, 2016.

[4] S.Mondal, M. M. Rahman, and C. K. Roy, “Can issues reported at
stack overflow questions be reproduced?: An exploratory study,”
in MSR, 2019, pp. 479-489.

[5] Sysdig. 2018 docker usage report. https://sysdig.com/blog/
2018-docker-usage-report/|

[6] J.Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall, “An empirical analysis of the docker container ecosystem on
github,” in MSR, 2017, pp. 323-333.

[7] Y. Zhang, B. Vasilescu, H. Wang, and V. Filkov, “One size does not
fit all: An empirical study of containerized continuous deployment
workflows,” in ESEC/FSE, 2018, pp. 295-306.

[8] Docker. (2017) Docker website. https://www.docker.com /|

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://sysdig.com/blog/2018-docker-usage-report/
https://sysdig.com/blog/2018-docker-usage-report/
https://www.docker.com/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2956919, IEEE

[9]
(10]
(1]

(12]
[13]

[14]
[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
(34]

[35]
[36]

[37]

(38]
[39]
[40]
[41]

[42]
[43]
[44]
[45]

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Software Engineering

L. Melo and M. d’Amorim. (2019) Paper artifacts. https://
docker-so-study.github.io/|

(2019) Stack Overflow Developer Survey Results. https://insights
stackoverflow.com/survey/2019!

(2017) Docker engine documentation. https://docs.docker.com/
engine/userguide/storagedriver/imagesandcontainers/,

Docker cheat sheet. https://goo.gl/Lq93kV.

S. User. (2017) Express - configure node.js, express and socket.io as
unique service. https:/ /stackoverflow.com/questions/10191048/,
GitHub. (2017) Web application frameworks server-side showcase.
https:/ /github.com/showcases/web-application-frameworks|

S. Exchange. (2017) Stack Exchange Data Explorer website. http:
/ / data.stackexchange.com/|

——. (2017) Stack Exchange website. http://stackexchange.com/|
Anonymous. (2017) Dataexplorer q&a selection query. https://data
stackexchange.com/stackoverflow /query /621859,

Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Want a good
answer? ask a good question first!” CoRR, vol. abs/1311.6876,
2013. [Online]. Available: http://arxiv.org/abs/1311.6876

Y. Yuan, T. Hanghang, X. Feng, and L. Jian, “Predicting long-term
impact of cqa posts: a comprehensive viewpoint,” in SIGKDD,
2014.

Z.Yanzhen, Y. Ting, L. Yangyang, M. John, and Z. Lu, “Learning
to rank for question-oriented software text retrieval,” in ASE, 2015,
pp. 1-11.

Y. Yuan, T. Hanghang, X. Tao, A. Leman, X. Feng, and L. Jian, “Joint
voting prediction for questions and answers in cqa,” in ASONAM,
2014, pp. 340-343.

Y. Ting, X. Bing, Z. Yanzhen, and C. Xiuzhao, “Interrogative-guided
re-ranking for question-oriented software text retrieval,” in ASE,
2014, pp. 115-120.

J. Sillito, F. Maurer, S. M. Nasehi, and C. Burns, “What makes a good
code example?: A study of programming qéa in stackoverflow,” in
ICSM, 2012, pp. 25-34.

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in MSR, 2014, pp. 112-121.

P. S. Kochhar, “Mining testing questions on stack overflow,” in
5th International Workshop on Software Mining, 2016, 2016, pp.
32-38.

A.S. Badashian, A. Esteki, A. Gholipour, H. Abram, and E. Stroulia,
“Involvement, contribution and influence in github and stack
overflow,” in CASCON, 2014, pp. 19-33.

B. Gregoire, Y. He, and H. Alani, “A question of complexity:
measuring the maturity of online enquiry communities,” in 24th
ACM Conference on Hypertext and Social Media, 2013, pp. 1-10.
I. Srba and B. Maria, “A comprehensive survey and classification

of approaches for community question answering,” in ACM Trans.

on the Web (TWEB), vol. 10, no. 3, Aug. 2016, pp. 18:1-18:63.

E. Lehmann and J. Romano, Testing Statistical Hypotheses, ser.
Springer Texts in Statistics. Springer New York, 2008.

C. Treude, O. Barzilay, and M. A. Storey, “How do programmers
ask and answer questions on the web?” in ICSE NIER, 2011, pp.
804-807.

S. Beyer and M. Pinzger, “A manual categorization of android
app development issues on stack overflow,” in ICSME, 2014, pp.
531-535.

P-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Boston, MA, USA: Addison-Wesley Longman Publ. Co., Inc., 2005.
Laravel. (2017) Laravel. https:/ /laravel.com/docs/installation!
(2017) Node js official docker image website. https://hub.docker
com/_/node/.

(2017) Debian. http://www.debian.org/|

G. user. (2017) Tar problem when installing meteor. https://github
com/meteor/meteor/issues/5762.

——. (2017) Automated build fails on "tar” with: "directory renamed
before its status could be extracted". https://github.com/docker/
hub-feedback /issues/727.

(2019) JSFiddle. https:/ /jstiddle.net.,

(2019) http:/ /http:/ /frisk.igorwiese.com/tutorial.

(2019) Jade Language: Node Template Engine. .

M. Liljedhal and]. Leibiusky. (2019) Play with docker. https://
github.com/play-with-docker/play-with-docker,

(2019) Play with docker labs. https://labs.play-with-docker.com/|
(2019) Web framework rankings. https:/ /hotframeworks.com/.
M. Lorr, Cluster analysis for social scientists. Jossey-Bass.

L. Melo, 1. Wiese, and M. d’Amorin, “Dataset,” 2018. [Online].
Available: https:/ /doi.org/10.5281/zenodo.3540911

[46]
[47]
[48]

[49]
[50]

[51]
[52]
[53]

[54]

[55]

[56]

12

E. Horton and C. Parnin, “Gistable: Evaluating the executability of
python code snippets on github,” in ICSME, 2018.

(2017) repl.it. https:/ /repl.it.

(2017) Cloud9. https:/ /c9.io.

(2017) Codeanywhere. https://codeanywhere.com/,

M. Allamanis and C. Sutton, “Why, when, and what: Analyzing
stack overflow questions by topic, type, and code,” in MSR, 2013,
pp- 53-56.

Apache. (2017) Lucene. https:/ /lucene.apache.org/core/\

D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in
github: Any snippets there?” in MSR, 2017, pp. 280-290.

E. Horton and C. Parnin, “Dockerizeme: Automatic inference of
environment dependencies for python code snippets,” in ICSE,
2019, pp. 328-338.

F. Hassan, R. Rodriguez, and X. Wang, “Rudsea: Recommending
updates of dockerfiles via software environment analysis,” in ASE,
2018, pp. 796-801.

StackOverflow. (2017) Stackoverflow hiring trends 2017. https://
stackoverflow.blog/2017/03/09/developer-hiring-trends-2017/\
(2017) Stack-overflow. |https://stackoverflow.com/insights/

survey /2017.

Luis Melo is a Software Engineer at C.E.S.A.R.,
Brazil. He obtained his masters degree in Com-
puter Science from the Federal University of
Pernambuco (UFPE), Brazil. His current research
interests include software security, testing and
quality. More information is available at http:
//www.lhsm.com.br.

Igor Wiese is an Associate Professor in the
Department of Computing at the Federal Uni-
versity of Technology — Parana, Brazil, where
he is interested in Mining Software Reposito-
ries, Human Aspects of Software Engineering,
and related topics. Wiese received a PhD de-
gree in computer science from the University
of Sao Paulo. More information is available at
http://www.igorwiese.com.

Marcelo d’Amorim is an Associate Professor at
the Federal University of Pernambuco (UFPE),
Brazil. He obtained his PhD degree in Computer
Science from the University of lllinois Urbana-
Champaign (USA) in 2007. He is interested in
preventing, finding, diagnosing, and repairing
software bugs and vulnerabilities to improve soft-
ware quality and productivity. More information is
available at http://www.cin.ufpe.br/~damorim/.

https://docker-so-study.github.io/
https://docker-so-study.github.io/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://goo.gl/Lq93kV
https://stackoverflow.com/questions/10191048/
https://github.com/showcases/web-application-frameworks
http://data.stackexchange.com/
http://data.stackexchange.com/
http://stackexchange.com/
https://data.stackexchange.com/stackoverflow/query/621859
https://data.stackexchange.com/stackoverflow/query/621859
http://arxiv.org/abs/1311.6876
https://laravel.com/docs/installation
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
http://www.debian.org/
https://github.com/meteor/meteor/issues/5762
https://github.com/meteor/meteor/issues/5762
https://github.com/docker/hub-feedback/issues/727
https://github.com/docker/hub-feedback/issues/727
https://jsfiddle.net
http://http://frisk.igorwiese.com/tutorial
https://github.com/play-with-docker/play-with-docker
https://github.com/play-with-docker/play-with-docker
https://labs.play-with-docker.com/
https://hotframeworks.com/
https://doi.org/10.5281/zenodo.3540911
https://repl.it
https://c9.io
https://codeanywhere.com/
https://lucene.apache.org/core/
https://stackoverflow.blog/2017/03/09/developer-hiring-trends-2017/
https://stackoverflow.blog/2017/03/09/developer-hiring-trends-2017/
https://stackoverflow.com/insights/survey/2017
https://stackoverflow.com/insights/survey/2017
http://www.lhsm.com.br
http://www.lhsm.com.br
http://www.igorwiese.com
http://www.cin.ufpe.br/~damorim/

